Update on the dilepton analysis on RGA: TCS and photoproduction of J/ψ

Pierre Chatagnon, for the dilepton group CLAS collaboration meeting – Jefferson Lab

8th of November 2023

Outline

Motivations, general considerations and planning

Spring 2019 Pass 2: Comparison with pass 1 and first look at MC/data comparison

Lepton PID using machine learning

 J/ψ event selection and resolution

Maximum likelihood fit for the extraction of the TCS parameters

Take-aways and timeline for future work

Motivations for dilepton final state measurement

Timelike Compton Scattering

 J/ψ photoproduction at threshold

$$\gamma p \to J/\psi \ p \to e^+ e^- p'$$

- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon and gluon GPDs (under 2-gluon exchange assumption and no open-charm contributions)
- Model-dependent limit on the branching ration of the Pc pentaquark.

Publication status

Timelike Compton Scattering

First Measurement of Timelike Compton Scattering, P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

Hint for the universality of GPDs
Importance of the D-term in the GPD parametrization

J/ψ photoproduction at threshold

Goals and plans

Timelike Compton Scattering

- Full statistics of RG-A will improve statistical accuracy by factor 2.
- Goal: use these results in GPD fits.

J/ψ photoproduction at threshold

- Statistics comparable with GlueX 2019 analysis
- Independent cross-check of the ~9 GeV cusp
- Enough statistics to extract tdependence and GFFs

General analysis strategy

1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (X)e^+e^-p'$$

 $p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \longrightarrow 2) |M_X^2| < 0.4 GeV^2$ Missing particle is an electron... 3) $|\frac{Pt_X}{P_X}| < 0.05$ or $Q^2 < 0.1$ GeV² ...scattered at small angle

II - Pass 2 data: first look at Spring 2019

, 220_E ŝ

Comparison of data and MC(I)

CLAS12 Preliminary - Dilepton final state

Event selection

- Event topology: ٠
 - exactly one electron in FD
 - exactly one positron in FD
 - exactly one proton
 - anything else •
- Lepton momenta > 1.7 GeV
- Sampling Fraction > 0.15
- Lepton AI PID score > 0.05 (trained on pass I simulation)
- **Exclusivity cuts:**
 - |MM²|<0.4 GeV²
 - |Q²|<0.1 GeV² •

Data Pass1 (788.0)

CLAS12 Preliminary - Dilepton final state

Comparison of data and MC (2)

- Same behavior is seen in Spring 19 and Fall 18 data: the large Q2 background must be subtracted before calculating any cross-section
- We will use the same-charge lepton event method to do so
 - ightarrow outbending dataset is essential

Sampling fraction MC/Data mismatch

10/24

III - Lepton PID using machine learning

Motivations and previous work

Motivations

- Above the HTCC, threshold both pions and leptons produce a HTCC signal. In the EB, only ECAL provide a separation between the two.
- $ep \rightarrow ep\pi^+(\pi^-)$ is a large background at large positron momenta

Previous work and motivations

- Long standing feature, already solved for the TCS publication
- Use the layer segmentation of the ECAL to provide separation Variables used: SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT

Current status

All material of this section provided by M.Tenorio Pita

Approach

- For both electrons and positrons, and for each RGA configuration:
- 2 (e^{+}/e^{-}) x 3 (Spring19/Fall18 in/out) = 6 classifiers
- Use the layer segmentation of the ECAL to provide separation
 Variables used: P, θ, φ, SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT
- Trained on simulation: Signal: flat e^{+/-} distribution, reconstructed as e^{+/-} Background: flat π ^{+/-} distribution, reconstructed as e^{+/-}
- Only RGA Spring 2019 for now

Input variables for signal (blue) and background (red)

Performances

- We tested both 6 and 9 input variables, for 2 methods NN and BDT.
- Signal efficiency: 99.4 %
- Background rate: 10%

NN 6 var.	Actual e+ (653771)	Actual π+ (101499)
Predicted e+	647688	12805
Predicted π+	6083	88694
	TPR 99.1 %	FPR 12.6 %
NN 9 var.	Actual e+	Actual π+
NN 9 var. Predicted e+	Actual e+ 649244	Actual π+ 10158
NN 9 var. Predicted e+ Predicted π+	Actual e+ 649244 4527	Actual π+ 10158 91341
NN 9 var.Predicted e+Predicted π+Performances	Actual e+ 649244 4527 TPR 99.4%	Actual π+ 10158 91341 FPR 10%

Validation

14000 12000 10000 8000 6000 4000 2000 3000 Negative Sample (101499) False Positives (10158) 2500 2000 1500 1000 500 0. 0.15 0.05

Jefferson Lab

NN.9 Variables

- Signal efficiency and background reduction as a function of particle kinematics
- Done on separate samples

IV - J/ ψ event selection, resolution and cross-section

Motivations

Inclusive elastic events

• In Pass I data, the smearing of the MC is key to understand the elastic peak resolution

Inclusive elastic events

- Although photo-production events are generated (Q²=0 GeV), the reconstructed virtuality of the incoming photon is large
- If the data resolution is not well reproduced by MC, the tail will be mis-reproduced and thus the extracted efficiency

Consequence for the number of J/ψ

• The J/ ψ photoproduction yield should depend on the Q2 cut similarly in data and simulation

Maximum virtuality of the incoming photon

$$ep \to e'J/\psi \ p' \to e'l^+l^-(X)$$

- Using tagged photo-production events, one can measure the virtuality of the incoming photon with only the FT resolution involved
- The large Q2 events in the untagged case are solely due to FD resolution effects

Consequence for the number of J/ψ

- The J/ ψ photoproduction yield should depend on the Q2 cut similarly in data and simulation

Maximum virtuality of the incoming photon

$$ep \to e'J/\psi \ p' \to e'l^+l^-(X)$$

- Using tagged photo-production events, one can measure the virtuality of the incoming photon with only the FT resolution involved
- The large Q2 events in the untagged case are solely due to FD resolution effects

Effect on the CS extraction

- Acceptance calculated using J/ψ photoproduction MC events and no Q² cut
- No cross-normalization with BH
- Fit using gaussian + exponential

V-TCS observable extraction: maximum likelihood

approach

Motivations and formalism

All material provided by D. Glazier

Limitation of the current approach

• Both non-trivial angle dependence and non-trivial angular integration...

$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = \frac{d^4\sigma_{INT} \mid_{\text{unpol.}}}{dQ'^2 dt d\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Im}\mathcal{H} + \dots \right]$$

... makes the naive fitting procedure not straight forward to interpret

• What about the pure TCS contribution ?

$$\sigma(\gamma p \to e^+ e^- p) = \sigma_{BH} + \sigma_{INT} + \sigma_{TCS}$$

Maximum likelihood fit

$$I(\theta, \phi, hP) = \sigma_{BH} + \sigma_{TCS} + \sigma_{INT}$$

$$I(\theta, \phi, hP) = B \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} + T(1 + \cos^2(\theta))$$

$$+ A \frac{1 + \cos^2(\theta)}{\sin(\theta)} (ReM\cos(\phi) - hP.ImM\sin(\phi))$$

If our data distribution, f, depends on an acceptance function $\eta(x_i)$ and a physics model $I(x_i : \theta_j)$:

$$f(x_i : \theta_j) = I(x_i : \theta_j).\eta(x_i)$$

Then we can approximate \boldsymbol{p} by summing over M accepted Monte-Carlo events,

$$p(x_i : \theta_j) = \frac{I(x_i : \theta_j)\eta(x_i)}{\sum_s^M I(x_{i,s} : \theta_j)}$$

$$L(\theta_j, Y) = \prod_k^N p(x_{i,k} : \theta_j) e^{-Y} \frac{Y^N}{N!}$$

- ln $L(\theta_j, Y) = -\sum_k^N \ln[\frac{I(x_{i,k} : \theta_j)}{\sum_s^M I(x_{i,s} : \theta_j)}] + Y - N \ln Y - \sum_k^N \ln \eta(x_{i,k})$
 $\mathcal{L}(\theta_j, Y) = -\ln L(\theta_j, Y) = -\sum_k^N \ln \frac{I(x_{i,k} : \theta_j)}{\sum_s^M I(x_{i,s} : \theta_j)} + Y - N \ln Y$

Current status of brufit for TCS

Brufit tutorial: <u>https://indico.jlab.org/event/343/contributions/5450/attachments/4585/5691/GlazierBruFit</u>

Fit components for Phi

- Method based on brufit <u>https://github.com/dglazier/brufit/tree/R6</u> <u>.28/tutorials/TCS</u>
- Tested on MC event passed through GEMC (geometrical acceptance + resolution effects)

Summary and outlook

- We have established a plan to reach both a new TCS and a first J/ ψ publication on RGA.
- The work force matches the need: Derek (brufit for TCS), Kayleigh (TCS on RGC), Mariana (J/ψ on RGA), Pierre (TCS and J/ψ on RGA), Richard (J/ψ on RGA and RGB), Rafo (Simulation)
- Spring 19 Pass 2 dataset looks good, with similar issue than Pass 1 (Resolution and high-Q² background).
- AI PID for lepton is well underway and consistent with Pass I analysis.
- Maximum likelihood fit method is being developed for TCS observable extraction.

Back-up

II - Pass 2 data: first look at Spring 2019

Spring 19 Pass 2: Vertices

III - Lepton PID using machine learning

Validation - Efficiency

Validation - Contamination

