

CLAS collaboration meeting, JLAB

November 07 - 10, 2023

Beam spin asymmetries from semiinclusive pion electroproduction

- Impact of vector meson production -

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is semi inclusive deep inelastic scattering

Experimental setup and available dataset

RG-A data from fall 2018 and spring 2019 (pass 1 cooking):

→ 10.6 GeV / 10.2 GeV electron beam
→ ~87 % average polarization

 \rightarrow liquid H₂ target

- Common QA scheme "OKforAsymmetry"
- Fiducial cuts and PID refinements for electrons, pions and photons
- π^0 selection cuts and background subtraction for π^0 events
 - ➔ Analysis note reviewed and approved!

A fully multidimensional binning

<u>Kinematic cuts</u>: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV y < 0.75

<u>Cut to suppress exclusive N and N* DVMP</u>: $M_{e\pi\chi} > 1.5 \text{ GeV}$

in total: 344 bins x 12 bins in $\Phi \sim 4130$ BSA bins

π^+ SIDIS:

S. Diehl et al. (CLAS Collaboration), Phys. Rev. Lett. 128, 062005 (2022).

g⁺D₁ model 2 ·

z > = 0.44

sum

eH¦

(z) = 0.57

eH₁

sum

 $\langle z \rangle = 0.34$

model 1

0.04

0

_____ _____ ____ ____ ____ ____ ____ ____ ____ ___ ___ ___ Δ.12⁻ ____ Δ.12⁻ ____ Δ.12⁻

-g⁺D₁ model 3

Where are the "bumps" and the P_T dependent structures coming from?

Possible source: Pions originating from exclusive VM (ρ) production

- → Can not be rejected in single pion SIDIS (2 missing particles!)
- → CLAS12 can study the properties of these events!
- Select events with $e \pi^+ \pi^- X$ Q² > 1.5 GeV² W > 2 GeV y < 0.75
- Pions: FD only for SIDIS π and FD + CD for secondary π (acceptance)

Kinematics of pions from ρ decays

Stefan Diehl, JLU + UCONN

CLAS collaboration meeting

1D study: Asymmtries of pions from ρ decays

Stefan Diehl, JLU + UCONN

11/08/2023

8

CLAS collaboration meeting

Asymmetries of pions from p decays

- Large "bumps" can only originate from pions produced in exclusive ρ production
- Pions originating from inclusive p show similar characteristics as SIDIS pions
- But: Exclusive ρ contamination in the SIDIS MC is small
 - + Not reliable for a multidimensional study
- → Determine the exclusive rho contamination from CLAS12 data

Contamination estimate based on 2 samples:

- 1. **e** π **X** SIDIS sample
- 2. **e** $\pi^+\pi^- \mathbf{X}$ with 2σ cut on ρ mass and cut on missing proton mass
- → MC based acc. correction for both samples!
- → Ratio of sample 2 and sample 1 gives a contamination estimate

CLAS collaboration meeting

How does the asymmetry look like for pions from charged p?

$$e p \rightarrow e p \rho^0 \rightarrow e p \pi^+ \pi^-$$

$$e p \rightarrow e n \rho^{+} \rightarrow e n \pi^{+} \pi^{0}$$

$$e \ p \rightarrow e \ \Delta^{\scriptscriptstyle ++} \ \rho^{\scriptscriptstyle -} \rightarrow e \ \Delta^{\scriptscriptstyle ++} \ \pi^{\scriptscriptstyle -} \ \pi^0 \ \rightarrow e \ p \ \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -} \ \pi^0$$

→ Limitted by π^0 / γ resolution!

CLAS collaboration meeting

CLAS collaboration meeting

Conclusion

- P_T dependent structures and "bumps" in the SIDIS data of charged pions are dominated by exclusive $\rho^0 \rightarrow \pi^+ \pi^-$.
- Structures are similar for positive and negative pions.
 - \rightarrow Effect more dominant for π due to small intrinsic asymmetry.
- π^0 SIDIS shows a more smoth behaviour.
 - → Consistent with the fact, that π^0 from charged ρ decays show mostly flat asymmetries without dominant structures.

But: Statistics and resolution are not sufficient for a final multidim. conclusion

- At high Q² structures disappear (higher twist effect?) and contaminations are at a reasonable level → More direct access to TMD physics for Q² > 5 GeV²
 - → Kinematic effects and discrepancy between data and theory are understood
 - ➔ A correction can not be performed for the present publication due to the existing uncertainties.