
Software Survey and Plans for A Repository for
Common Analysis Algorithms

CLAS Collaboration Meeting

Jefferson lab

November 2023

Christopher Dilks

C. Dilks -- Software Survey and Analysis Algorithm Repository 2

Software Survey

Many thanks to the participants!

C. Dilks -- Software Survey and Analysis Algorithm Repository 3

Software Survey

Implement a repository of common methods
(“algorithms”) shared among physics analyses,
such as fiducial cuts and enhanced PID criteria.

● Provide simple access to common techniques

● Algorithm preservation

User-centered design → the software survey

● Additional questions of general interest to the
CLAS Software Group were included

Implement a repository of common methods
(“algorithms”) shared among physics analyses,
such as fiducial cuts and enhanced PID criteria.

● Provide simple access to common techniques

● Algorithm preservation

User-centered design → the software survey

● Additional questions of general interest to the
CLAS Software Group were included

Many thanks to the participants!

C. Dilks -- Software Survey and Analysis Algorithm Repository 4

Responses

● 41 respondents
● Average time to take the survey: 12 minutes
● More responses are still welcome!

Excludes outliers:
 2.9 hours
 24.4 hours
 51.0 hours

Day in Oct. 2023

Deployment

C. Dilks -- Software Survey and Analysis Algorithm Repository 5

Survey Results

Nothing surprising here…

Broad range!

More details than what the
word cloud shows
● MesonX
● KY
● N*
● J/psi
● CLAS6
● and more

Nothing surprising here…

Broad range!

More details than what the
word cloud shows
● MesonX
● KY
● N*
● J/psi
● CLAS6
● and more

C. Dilks -- Software Survey and Analysis Algorithm Repository 6

Survey Results

(one response per line)

C. Dilks -- Software Survey and Analysis Algorithm Repository 7

Survey Results

Other(s):
● uproot
● pandas
● numpy

C. Dilks -- Software Survey and Analysis Algorithm Repository 8

Survey Results

Other(s):
● uproot
● pandas
● numpy

Most respondents use ROOT
Those who do not use: (one response per line)

Some respondents use ROOT v7
Most of which also use ROOT v6

C. Dilks -- Software Survey and Analysis Algorithm Repository 9

Survey Results

groot,matplotlib,clas12-analysis,Other(s)
matplotlib,jupyter,Geant4,GEMC,clas12root,coatjava,CCDB,RCDB,QADB,git/Github/Gitlab,Other(s)
PAW,GEMC,CCDB,RCDB,QADB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,clas12root
ROOT6,clas12root,git/Github/Gitlab
ROOT6,clas12root,j2root,clas12-analysis,QADB
ROOT6,Geant4,GEMC,clas12root,coatjava,clas12-analysis,CCDB,RCDB,git/Github/Gitlab
ROOT6,Geant4,GEMC,coatjava,CCDB,RCDB,git/Github/Gitlab
ROOT6,GEMC,clas12root,coatjava,CCDB,RCDB
ROOT6,GEMC,clas12root,coatjava,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,GEMC,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,gnuplot,jupyter,Geant4,clas12root,git/Github/Gitlab
ROOT6,groot,GEMC,clas12root,brufit,chanser,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,groot,GEMC,clas12root,coatjava,clas12-analysis,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,groot,groovysh,jshell,Geant4,GEMC,coatjava,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,groot,jupyter,groovysh,Geant4,GEMC,coatjava,CCDB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,jupyter,Geant4,GEMC,clas12root,chanser,CCDB,RCDB,QADB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,jupyter,Geant4,GEMC,clas12root,clas12-analysis,CCDB,RCDB,git/Github/Gitlab
ROOT6,matplotlib,Geant4,GEMC,clas12root,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,matplotlib,gnuplot,Geant4,GEMC,clas12root,git/Github/Gitlab
ROOT6,matplotlib,jupyter,GEMC,clas12root,coatjava,CCDB,RCDB,QADB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,matplotlib,jupyter,GEMC,clas12root,coatjava,clas12-analysis,git/Github/Gitlab
ROOT6,matplotlib,jupyter,jshell,Geant4,GEMC,coatjava,CCDB,RCDB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,pyroot,gnuplot,jshell,Geant4,GEMC,coatjava,CCDB,RCDB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,pyroot,groot,matplotlib,mathematica,groovysh,Geant4,GEMC,coatjava,j2root,brufit,QADB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,pyroot,groot,matplotlib,mathematica,jupyter,Geant4,GEMC,clas12root,coatjava,chanser,clas12-analysis,CCDB,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT6,pyroot,groot,matplotlib,mathematica,jupyter,groovysh,Geant4,GEMC,coatjava,j2root,CCDB,RCDB,git/Github/Gitlab
ROOT6,pyroot,matplotlib,jupyter,GEMC,clas12root,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,pyroot,matplotlib,jupyter,GEMC,clas12root,git/Github/Gitlab
ROOT6,ROOT7,Geant4,GEMC,clas12root
ROOT6,ROOT7,GEMC,clas12root,coatjava,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,ROOT7,gnuplot,Geant4,GEMC,clas12root,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,ROOT7,gnuplot,groovysh,Geant4,GEMC,clas12root,coatjava,CCDB,RCDB,git/Github/Gitlab
ROOT6,ROOT7,groot,mathematica,groovysh,GEMC,coatjava,clas12-analysis,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,ROOT7,jsroot,clas12root,coatjava,j2root,clas12-analysis,CCDB,git/Github/Gitlab
ROOT6,ROOT7,jupyter,Geant4,GEMC,clas12root,brufit,chanser,CCDB,RCDB,QADB,git/Github/Gitlab
ROOT6,ROOT7,matplotlib,jupyter,GEMC,clas12root,coatjava,CCDB,RCDB,git/Github/Gitlab
ROOT6,ROOT7,pyroot,matplotlib,jupyter,git/Github/Gitlab,Docker/Apptainer(Singularity)
ROOT7,GEMC,git/Github/Gitlab
ROOT7,pyroot,jupyter,Geant4,GEMC,RCDB,git/Github/Gitlab

(all responses, one per line)

C. Dilks -- Software Survey and Analysis Algorithm Repository 10

Survey Results

Wide range
C++ dominant, followed by
Python, Bash, Java

We did not ask the
application of these
languages (e.g., it’s unlikely
one does CPU-intensive
analysis in Bash)

C. Dilks -- Software Survey and Analysis Algorithm Repository 11

Survey Results

Only 1 respondent does
not use C++: they use:

Java users also use:

Python users also use:

Fortran users also use:

A common analysis algorithm
repository must support everyone

C. Dilks -- Software Survey and Analysis Algorithm Repository 12

Survey Results

C++
C++
C++
C++
C++
C++,Bash
C++,Bash
C++,Csh
C++,Groovy
C++,Java
C++,Java,Groovy,Bash
C++,Java,Groovy,Bash,Csh
C++,Java,Groovy,Python
C++,Java,Groovy,Python,Bash,Csh,Perl
C++,Java,Groovy,Python,Bash,Csh,Perl
C++,Java,Groovy,Python,Bash,Ruby
C++,Java,Groovy,Python,Fortran,Bash,Csh
C++,Java,Groovy,Python,Fortran,Bash,Csh
C++,Java,Python
C++,Java,Python
C++,Java,Python,Bash
C++,Java,Python,Bash
C++,Java,Python,Bash,Csh
C++,Java,Python,Csh
C++,Java,Python,Fortran,Perl
C++,Java,Python,Perl
C++,Python
C++,Python
C++,Python
C++,Python,Bash
C++,Python,Bash
C++,Python,Bash
C++,Python,Bash
C++,Python,Bash
C++,Python,Bash,Csh
C++,Python,Bash,Csh,Perl,zsh
C++,Python,Csh
C++,Python,Fortran,Bash,Csh
C++,Python,Fortran,Csh,Perl
Java,Groovy,Fortran

(all responses, one per line)

C. Dilks -- Software Survey and Analysis Algorithm Repository 13

Survey Results

Other(s):
● PAW ntuples
● MC files
● Pre-DST banks
● EVIO

C. Dilks -- Software Survey and Analysis Algorithm Repository 14

Survey Results

Other(s):
● Filter → event-by-event text files and

ROOT trees with calculated kinematics

C. Dilks -- Software Survey and Analysis Algorithm Repository 15

Survey Results

Other(s):
● Momentum Smearing for MC/Data

matching

C. Dilks -- Software Survey and Analysis Algorithm Repository 16

Survey Results

● RG-A methods maintained in Chanser
● Fiducial Cuts: in C++, Python, Groovy, Java, (and Fortran?)
● PID refinements
● BANDsoft tools
● RG-M tools
● CLAS6
● QA

Summary of responses

DRY:
Don’t Repeat Yourself!

C. Dilks -- Software Survey and Analysis Algorithm Repository 17

Survey Results

● Select by PID
● Combinatorics, topology selection

● Filtering
● Criteria
● Corrections

● Repeat for MC
● Handle BG
● Extract Observable

● Often iterative

Summary of responses

C. Dilks -- Software Survey and Analysis Algorithm Repository 18

Survey Results

C. Dilks -- Software Survey and Analysis Algorithm Repository 19

Survey Results

● Documentation outdated, not clear, not centralized, need common examples – no clear entry point
● Better API to read HIPO
● Corrections built-in to trains
● Python + data frames preferred – lack of data frame support in HIPO
● Handling ragged edge arrays (awkward arrays)
● Hard to install locally, not flexible – prefer to run small tasks and testing on local machine
● clas12root – steep learning curve – but without it, it would be “tedious” to study HIPO files
● Prefer ROOT over CLAS12 Java software
● Great compared to CLAS at 6 GeV
● Lack of unified software with procedures (PID, corrections); closest is Chanser
● Lack of communication between run groups and analyzers about tools – wheel reinvention
● Simulation work is tedious – changes require expert involvement
● Software is becoming “black box” and not educating students
● Too large variety of repeated tools
● Prefer more info in HIPO rather then in databases (CCDB, RCDB)

Summary of responses

C. Dilks -- Software Survey and Analysis Algorithm Repository 20

Survey Results

● ROOT TMVA
● Convolutional NNs
● TensorFlow
● Keras
● PyTorch
● scikit-learn

● C++
● Python

Summary of responses

C. Dilks -- Software Survey and Analysis Algorithm Repository 21

Survey Results

● Most respondents do
● Most use OSG and/or ifarm

● “OSG is working nicely. Congratulations.”
● Small simulations on local resources

Summary of responses

C. Dilks -- Software Survey and Analysis Algorithm Repository 22

Survey Results

Mostly positive feedback!

Analyses will need to test and adapt

Website interaction desired

Easier than searching through analysis notes

One language

Peer review

Why not apply corrections during reconstruction?

Compatibility with C++/ROOT/Chanser/etc.

Run period dependence

Ability to customize

Executable on ifarm

Up-to-date documentation

Examples

Easy for new users

Kinematic calculations (e.g. particle → z, phi, etc.)

Polarization from closest Moeller measurement

C++ / Java / Python

Mostly positive feedback!

Analyses will need to test and adapt

Website interaction desired

Easier than searching through analysis notes

One language

Peer review

Why not apply corrections during reconstruction?

Compatibility with C++/ROOT/Chanser/etc.

Run period dependence

Ability to customize

Executable on ifarm

Up-to-date documentation

Examples

Easy for new users

Kinematic calculations (e.g. particle → z, phi, etc.)

Polarization from closest Moeller measurement

C++ / Java / Python

And some critical thoughts:

Difficult to create one-size-fits-all methods

Channel / observable / run period / analysis
dependence is difficult

Do not be opaque, black box
● Stifle innovation
● Does not educate students
● May overlook a major issue in the code

Do not force a framework, should be flexible

Preference to do things themselves

And some critical thoughts:

Difficult to create one-size-fits-all methods

Channel / observable / run period / analysis
dependence is difficult

Do not be opaque, black box
● Stifle innovation
● Does not educate students
● May overlook a major issue in the code

Do not force a framework, should be flexible

Preference to do things themselves

C. Dilks -- Software Survey and Analysis Algorithm Repository 23

Repository
Design

C. Dilks -- Software Survey and Analysis Algorithm Repository 24

Survey Results
RGM methods

Ports of Fiducial cuts from C++ to:
● Python
● Groovy
● Java
● Fortran

Common RGA methods in Chanser

RGM methods

Ports of Fiducial cuts from C++ to:
● Python
● Groovy
● Java
● Fortran

Common RGA methods in Chanser

Issue: ports and code duplication
● DRY: Don’t Repeat Yourself!
● If the C++ fiducial cuts are

updated, who updates the ports?
● Are the ports cross checked?
● Automated testing?

Issue: ports and code duplication
● DRY: Don’t Repeat Yourself!
● If the C++ fiducial cuts are

updated, who updates the ports?
● Are the ports cross checked?
● Automated testing?

Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Modularity: stay lightweight and as

framework-independent as possible

Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Modularity: stay lightweight and as

framework-independent as possible

https://github.com/esteejus/rgm
https://github.com/dglazier/chanser
https://github.com/esteejus/rgm
https://github.com/dglazier/chanser

C. Dilks -- Software Survey and Analysis Algorithm Repository 25

Dominant Language Model

C++

Java Python FortranC++

Bindings / FFI

Fiducial
Cuts

PID
Cuts

…

API Level:
For the Users

Criteria “Algorithm” level:
The Code

Require all criteria (algorithms) to
be in one “dominant” language,
e.g., C++

Consistent and maintainable

If an algorithm is not in the
dominant language, either:
● Port it to the dominant

language
● Write a wrapper algorithm in

the dominant language

Use bindings / foreign function
interfacing to expose API in other
languages

Require all criteria (algorithms) to
be in one “dominant” language,
e.g., C++

Consistent and maintainable

If an algorithm is not in the
dominant language, either:
● Port it to the dominant

language
● Write a wrapper algorithm in

the dominant language

Use bindings / foreign function
interfacing to expose API in other
languages

C. Dilks -- Software Survey and Analysis Algorithm Repository 26

Alternative: Free Model

Java

Python

Fortran

C++ Allow algorithms to be in any
language
● No need to port or wrap any

existing algorithms / criteria

Need bidirectional bindings
between all of them
● 4 languages → 8 bindings

Hard to implement

Hard to maintain

Prefer Dominant Language
Model

Allow algorithms to be in any
language
● No need to port or wrap any

existing algorithms / criteria

Need bidirectional bindings
between all of them
● 4 languages → 8 bindings

Hard to implement

Hard to maintain

Prefer Dominant Language
Model

C. Dilks -- Software Survey and Analysis Algorithm Repository 27

Data Communication

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● For full generality, algorithm I/O should be banks

HIPO data unit: HIPO bank
● Need bidirectional converters from the analysis “user” language to the

dominant language (C++)
● Exploring ideas of “language independent banks” or data structures

Alternative: structs with specific information
● Pros:

● better compatibility with clas12root caching
● simpler to implement and use

● Cons
● the user has to fill the struct, correctly
● output is not consistently handled: boolean vs. correction factor vs …

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● For full generality, algorithm I/O should be banks

HIPO data unit: HIPO bank
● Need bidirectional converters from the analysis “user” language to the

dominant language (C++)
● Exploring ideas of “language independent banks” or data structures

Alternative: structs with specific information
● Pros:

● better compatibility with clas12root caching
● simpler to implement and use

● Cons
● the user has to fill the struct, correctly
● output is not consistently handled: boolean vs. correction factor vs …

REC::Calorimeter

REC::Track

REC::Traj

REC::Particle

Fiducial Cuts

REC::Particle

● with only particles which
pass the fiducial cuts

● maybe different name, but
same structure

C. Dilks -- Software Survey and Analysis Algorithm Repository 28

Services

The algorithms will all have some basic common needs: “service singletons”
● Logging system

● Log-level control
● Silence for production, verbose for debugging
● Errors always print

● Unit system
● Define what is “1” in each system
● For example, in Geant4: 1 = mm = MeV = ns

● Algorithm configuration
● For example: fiducial cut levels (loose, medium, tight)
● Configuration file model

● Default config file: the defaults for all algorithms
● Handle run-period dependent configuration
● Users may override any part (or all) of it with custom config files

The algorithms will all have some basic common needs: “service singletons”
● Logging system

● Log-level control
● Silence for production, verbose for debugging
● Errors always print

● Unit system
● Define what is “1” in each system
● For example, in Geant4: 1 = mm = MeV = ns

● Algorithm configuration
● For example: fiducial cut levels (loose, medium, tight)
● Configuration file model

● Default config file: the defaults for all algorithms
● Handle run-period dependent configuration
● Users may override any part (or all) of it with custom config files

C. Dilks -- Software Survey and Analysis Algorithm Repository 29

Testing

Needed to maintain stability

Some Options for automated testing:
● Unit tests, requiring high coverage
● clas12-validation: automated testing of full chain

● event generation → simulation → reconstruction → analysis
● no analysis step yet
● https://github.com/JeffersonLab/clas12-validation

Need also cross checks / peer review of algorithms

Needed to maintain stability

Some Options for automated testing:
● Unit tests, requiring high coverage
● clas12-validation: automated testing of full chain

● event generation → simulation → reconstruction → analysis
● no analysis step yet
● https://github.com/JeffersonLab/clas12-validation

Need also cross checks / peer review of algorithms

https://github.com/JeffersonLab/clas12-validation
https://github.com/JeffersonLab/clas12-validation

C. Dilks -- Software Survey and Analysis Algorithm Repository 30

Documentation

We have analysis notes

The algorithm itself, although maybe hard to read, is effectively self-documenting
● Comment your code!
● Version control → algorithm is preserved

Documentation of common repository usage is a separate issue
● API documentation
● Examples

We have analysis notes

The algorithm itself, although maybe hard to read, is effectively self-documenting
● Comment your code!
● Version control → algorithm is preserved

Documentation of common repository usage is a separate issue
● API documentation
● Examples

C. Dilks -- Software Survey and Analysis Algorithm Repository 31

Containerization

Provide a Docker image with all dependencies + the common criteria repository, compiled
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an

automated process

Maintenance: everyone gets the same bugs

Provide a Docker image with all dependencies + the common criteria repository, compiled
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an

automated process

Maintenance: everyone gets the same bugs

Multi-lingual support → difficult to setup (compile) for users!
Too many dependencies!

Base image Layer
● Underlying Linux distribution
● Package updates
● Typical common software, e.g.,

vim, emacs
● Python, C++, Java, Groovy, Fortran

Common Physics Software Layer
● ROOT, PAW
● Geant4

CLAS Software Layer
● Clas12root
● Chanser
● Brufit
● … … …
● Common criteria repository

Maintained by JLab
Maintained by JLab

Maintained by CLAS

See Brad’s Talk

C. Dilks -- Software Survey and Analysis Algorithm Repository 32

Outlook and Plans

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

… and fill out the survey if you haven’t!

C. Dilks -- Software Survey and Analysis Algorithm Repository 33

backup

C. Dilks -- Software Survey and Analysis Algorithm Repository 34

Pseudocode Prototyping

Banks are in the analysis code’s language

CommonAnalysisCriteria is
● In C++: the main class
● In Python: the main class, wrapping the

C++ algorithms (needs some thought
how to design…)

Banks are in the analysis code’s language

CommonAnalysisCriteria is
● In C++: the main class
● In Python: the main class, wrapping the

C++ algorithms (needs some thought
how to design…)

C. Dilks -- Software Survey and Analysis Algorithm Repository 35

Pseudocode Prototyping

The API code will handle the conversion
from the analysis code banks to language-
independent banks, and call the
appropriate underlying algorithm

These API methods could be auto-
generated

Assumes JSON is the “language
independent bank” (needs some thought
and testing)

The API code will handle the conversion
from the analysis code banks to language-
independent banks, and call the
appropriate underlying algorithm

These API methods could be auto-
generated

Assumes JSON is the “language
independent bank” (needs some thought
and testing)

C. Dilks -- Software Survey and Analysis Algorithm Repository 36

Pseudocode Prototyping

The algorithm itself follows the typical 3-
methods pattern:
● Init
● Process
● End

A main CommonAnalysisCriteria can
handle
● Service initialization
● Algorithm configuration
● Cleanup at the end

The algorithm itself follows the typical 3-
methods pattern:
● Init
● Process
● End

A main CommonAnalysisCriteria can
handle
● Service initialization
● Algorithm configuration
● Cleanup at the end

	Title Here
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

