Update from CLAS12 High-Luminosity TF

Florian Hauenstein Nov 10, 2023 CLAS Collaboration Meeting

Why Higher Luminosity

Why Higher Luminosity

- Catchup on statistics (existing data about factor two lower statistics than expected)
- Gain time for long remaining physics program
- Opportunities for new, low-rate reactions

Why Higher Luminosity

- Catchup on statistics (existing data about factor two lower statistics than expected)
- Gain time for long remaining physics program
- Opportunities for new, low-rate reactions
- Phase-1 Upgrade:

~2*10³⁵cm⁻²s⁻¹ with charged particle reconstruction efficiency > 85%

How to Achieve Phase-1 Goals?

- Improve FD Tracking with AI and Denoising
- Assessment of detector performances at higher luminosities
- New, fast µWELL tracker in front of R1 DC

Improved FD Tracking with AI and Denoising

- Close to required slope of 0.001/nA
- FD tracking without µRWELL ready for higher luminosities

Detector Performance at Higher Luminosities

- PMT Detectors (P/ECAL, C/FTOF, L/HTCC, CND, RICH)
 - Operational at x2 lumi
 - Main concern: Aging of PMTs (C/FTOF, ECAL) —> replacement plan in development
 - Non-linearity studies at higher luminosities planned for RGK (CTOF)
- DC
 - RGC and RGD study: Operational at x2 lumi
 - Concern: long term stability at x2 lumi -> monitoring in development
 - In progress: Study effect of higher luminosity on resolutions
- CVT
 - Improved stability of BMT at high lumi with new gas
 - SVT okay for x2 lumi
 - Main concern: Spare tiles for BMT —> plan for new tiles in development
 - Need: Improved tracking efficiency with AI based background rejection
- FT:
 - Operational at x2 lumi
 - Concerns:
 - FTC: Light reduction from radiation damage —> more frequent energy calibrations
 - FTH: Gain dependence of SiPm current —> Redesign of FTH FEE

New µRWELL Tracker

- Micro-Pattern Gaseous Detector (MPGD)
 - Amplification in wells
 - Spark protection due to resistive layer
 - Low-mass, good spatial and timing resolution
- 2D capacitive sharing readout

K. Gnanvo, NIM A1047, 167782 (2023)

Our Prototype

- Largest µRWELL build so far
- 2D-U/V strip readout with 10 deg stereo angle
 - pitch 1mm
 - various strip width (to find optimal combination)
- Electronics APV25 and SRS

Full Design (in progress)

Segment 1

Segment 2

Segment 3

During Installation

Readout

Figures from Chris Guthrie

µRWELL in GEMC

Stors U-V Beam direction

- Implemented upstream of R1-DC (M. Bondi)
 - 6 sectors with either 1 or 2 double-sided detectors
 - each detector: 3 layers capacitive sharing with U-V readout
- µRWELL simulations
 - Coatjava geometry service:
 - GEANT4 volumes for GEMC
 - Definition of strip lines in local and global frame
 - GEMC:
 - **Geometry** full detector completed and merged. Prototype geometry implemented
 - **Digitization** effective description of detector response. Implementation completed and included. More tuning to be done based on prototype and readout electronics tests.

Slide by Raffaella

Combined µRWELL-DC Track Finding

Slide by Raffaella

µRWELL+DC Tracking

- Forward Tracking modified to use URWell as an additional region (R0)
- First studies of impact on resolution in different tracking scenarios completed
- Waiting on GEMC background to continue track finding and fitting optimization

Slide by Raffaella

T. Cao

Prototype Testing- Status April

- HV current leaks from left to right —> only half operational
- Low efficiency in cosmic setup -> 1%
- No clear signal during beam tests in HallB and high noise
- Improvements April May:
 - seal of gas inlays —> bubbles observed on exit
 - improved trigger latency —> no signal clipping
 - improved cosmic setup —> GEM and trigger scintillators closer
 - HV filter box
 - signal noise suppression with faraday cage with wrapped Al foil

Setup at EEL

- Particles need to pass 10x10 GEM and scintillators —> defines area of µRWELL
- Efficiency is relative to GEM which is assumed to be 100% efficient

Cosmic Signal with uRWELL

Cosmic Signal with uRWELL and GEM

Some events have signal in both detectors

Analysis Procedure (guidance from Kondo)

- Select hits 3σ away from noise/pedestal
- Clusters with at least 2 hits

Note: clusters with 1 hits are ignored in the analysis.

ADC U-clusters

GEM XY distribution is

uniform as expected!

Event has at least two hits in GEM X and Y

Plots by Rafo

2D Distribution

Efficiency Results

Drift Voltage = 400 V

- Increase of efficiency with voltage
- Difference between U and V efficiency
- BUT: low overall efficiency

Efficiency Results

Ar:CO₂ 80:20

- Larger efficiency for 80:20 due to more gain
- Still difference between U and V efficiency
- Expected efficiency >90%!

Test with Ar:C₄H₁₀ (Isobutane) 90:10

80

Ar:C₄**H**₁₀

Efficiency [%] - Eff. U cluster Eff. V cluster Eff. Any cluster Mesh HV **Ar:CO₂ 80:20** • 575V for Ar:CO₂ 60 **500V for Ar:C**₄H₁₀ 50 **Result with Ar:C4H10** ~2 times larger efficiency U and V similar 40 **BUT: unstable operation** 30 20 400 450 500 550

 Note: No more measurements with different gas because detector was sent back to CERN for repairs (see later slide)

600

HV Drift [V]

Efficiency Dependence of Strip Width/Length

• 3 GEM positions

- U175µm / V355µm crossing (run 1576)
- U175µm / V550µm crossing (run 1574)
- U550/262µm / V500µm crossing (run 1582)
- Ar:CO₂ 75:25 and same HV on μ RWELL

Results for the Runs

run 1582

run 1576

- All "V" strips show the same efficiency (~14%), however the strips in 1574 are in average x2 longer than the one for 1582
- U strip efficiency dependence on strip width/length difficult to interpret

run 1574

Results for the Runs

run 1582

run 1576

- All "V" strips show the same efficiency (~14%), however the strips in 1574 are in average x2 longer than the one for 1582
- U strip efficiency dependence on strip width/length difficult to interpret

Dependence on capacitance of strips??

run 1574

U strip capacitance

U strip capacitance vs Area

- Capacitance is high typical values for GEMs with APV readout are 100-200pF —> could explain lower overall efficiency —> loss of signal to noise
- More studies underway

Plot by Rafo

Upcoming Plans with Prototype

- Detector repaired at CERN
 - leakage problem solved (confirmed in EEL)
 - recovered bad HV sectors
- Cosmic measurements on left side with lower capacitance

• Measurements with VMM3

- Study of other gas mixtures and HV
- Next year maybe again in the hall?

µRWELL Prototype lests at INFN

2D – readout: step by step approach

1. One prototype reads the 2-nd coordinate on the "top" copper layer

Same readout geometry on the ton and the bottom.

RWELL

layer is the object of investigation.

- 1200 μm pitch
- 300 μm vs 1000 μm strips width
- 10 x 10 cm² active surface
- 83 channels

Coppe

Kaptor

Honeycomb/millifoam

Al – Faraday Cage

Glue FR4 glue

glue FR4 glue

µRWELL Prototype Tests at INFN

 π/μ

Test Beam at CERN SPS North Area H8 in June

Efficiency

 $10x10 \text{ cm}^2$

Top/Bottom

2D readout

 0 cm^2

- Leadout

city Sharing

- CS readout reaches a plateau at higher HV values than standard readout scheme.
- TOP readout is not yet at plateau at 600 V
 (HV was chosen to to be raised to higher values)

e

Reference

Tracker - OUT

NEXT STEP

• Test the 50x50 cm2 prototype!

with X-RAYS and cosmics

November 9, 2023

7

Future Phase-2 Luminosity Upgrade

- CEBAF can deliver 10³⁷cm⁻²s⁻¹ luminosity
- High luminosity needed to study new and low cross section reaction like DDVCS

- Phase-2 update converts CLAS to µCLAS
 - new Moller cone
 - µ-pairs in FD after shielding
 - calorimeter and tracker instead of HTCC
 - tracker inside solenoid for recoils
 - timeframe 7-10y

Tracker — High-rate capable µRWELL

- LDRD project
- Prototype testing
 - Various resistive layer layouts
 - Capacitive sharing X-Y-U strip readout
 - Thin gap

Cross section view of 3-coordinates X-Y-U strips capacitive-sharing readout

- Software development
 - Implementation in GEMC
 - Hit and track reconstruction algorithm in a high-rate environment
 - Validation with test measurements
- Personnel:
 - 1 Postdocs (80% FTE)
 - Florian Hauenstein, Rafayel Paremuzyan, Kondo Gnanvo

Questions?

Backup

Results Ar/CO2 75:25

Results Ar/CO2 80:20

UDMELL Drototupo Tooto of INEN

Resolution

- CS readout reaches 100 μm resolution at highest HV values (starting from 1200 μm pitch)
- TOP readout resolution is fixed at 250-300 μm (pitch is 780 μm)

Urwell in HallB

Noise Issue fixed

- However, still no clear signal observed :(latency issues?
- Installed GEM behind the trigger bar in FTOF panel 2, cover about 1/90 of FTOF bar

Signals from GEM in HallB

GEM showed signal but still nothing seen in uRWELL

Alternative Design

strips parallel to sides for segment 1, readout from top, pitch could be larger than 1mm strips parallel for segment 2 with vias to readout on side strips at +/-10deg for Segment 3

Generation of Beam Background

- Using GEMC to generate URWell beam background
- Assessing the accuracy comparing DC GEMC background to data
 - Currently both occupancy and tracking efficiency from luminosity-scan analysis indicate simulated BG is 30% lower than data
 - -Investigation of possible sources in progress

Slide by Raffaella