Overview of Ongoing RG-D Data-taking

Activities

MALINE LORDER MARINE

Fall CLAS Collaboration Meeting

November 8th, 2023

Lamiaa El Fassi & Mikhail Yurov (for Run Group D)

RG-D Experiments

<u>E12-06-106</u>: Study of Color Transparency (CT) in Exclusive Vector Meson Electroproduction off Nuclei

Spokespeople: W. Armstrong¹, L. El Fassi³, K. Hafidi¹, M. Holtrop⁴, and B. Mustapha¹

¹: Argonne National Lab (ANL)
³: Mississippi State U. (MSSate)
⁵: Jefferson Lab

E12-06-106A (endorsed by PAC-48): Nuclear TMDs in CLAS12

Spokespeople: R. Dupré², L. El Fassi³, Zein-Eddine Meziani¹, and Holly Szumila-Vance⁵

²: IJCLAB, Orsay, France⁴: University of New-Hampshire (UNH)

RG-D: CT Experiment

 <u>E12-06-106</u>, CT, experiment was approved in PAC-48 Jeopardy review for 30 PAC days with B⁺ rating.

- Coherence length, l_c : the lifetime of the **qq-bar** pair.
- Formation time, l_f : the time evolution of SSC to an on-shell ρ^0 meson.

The CT signature is the increase of the medium "nuclear" transparency, $T_A = \frac{\sigma_A}{A \sigma_N}$, as a function of the four-momentum transfer squared, Q^2 . $T_A = \frac{1}{\frac{CT \text{ Onset}}{Q^2_0}}$

RG-D: CT Experiment & Nuclear TMDs

 <u>E12-06-106</u>, CT, experiment was approved in PAC-48 Jeopardy review for 30 PAC days with B⁺ rating.

The CT signature is the increase of the medium "nuclear" transparency, $T_A = \frac{\sigma_A}{A \sigma_N}$, as a function of the four-momentum transfer squared, Q^2 . $T_A \bigwedge_{1 \text{ Complete transparency}}$ CT Onset Glauber

 <u>E12-06-106A</u>, Nuclear TMDs study uses the same CT running conditions except the beam polarization, and aims to explore
 SIDIS
 Production

 Q^2_0

- New approach for nuclear SIDIS
- Fragmentation functions in nuclei
- Medium modification of partons distributions and dynamics
- Nuclear asymmetries at the partonic level

RG-D Run Configuration

- RG-D experiments run with
 - * 10.54 GeV polarized beam;
 - * Standard CLAS12 configuration with FT-OFF;
 - \star 5-cm-long LD₂ cell in the newly built cryogenic system positioned at -5 cm;
 - * Remotely controlled 5-cm-apart solid foils centered @ -5 cm;
 - * Different beam currents as approved in the Radiaiton Safety Analysis Document for various target's production runs, except for CuSn configuration!

RG-D Run Configuration

- RG-D experiments run with
 - * 10.54 GeV polarized beam;
 - * Standard CLAS12 configuration with FT-OFF;
 - \times 5-cm-long LD₂ cell in the newly built cryogenic system positioned at -5 cm;
 - * Remotely controlled 5-cm-apart solid foils centered @ -5 cm;
 - * Different beam currents as approved in the Radiaiton Safety Analysis Document for various target's production runs, except for CuSn configuration!

RG-D Run Info

- **Run-wiki**: https://wiki.jlab.org/clas12-run/index.php/Run_Group_D
- Analysis wiki: https://clasweb.jlab.org/wiki/index.php/Run_Group_D
- Physics Division Liaison (PDL): Nathan Baltzell
- **RG/Analysis Coordinator**: Lamiaa El Fassi
- Cooking Chef (CC): Mikhail Yurov

• Run Coordinators:

RG-D Run Coordinators Sign up Sheet for 72.5 Calendar Days Run Period																						
	September 2023						October 2023				November 2023				December 2023							
	Fri., 1st	Wed., 13th	Fri., 15th (Start of Run*)	Wed., 20th	Fri., 22nd (Start of Run*)	Wed., 27th	Fri., 29th (Start of Run*)	Sun., 1st	Tue., 3rd (Start of Run*)	Wed., 4th	Wed., 11th	Wed., 18th	Wed., 25th	Wed., 1st	Wed., 8th	Wed., 15th	Wed., 22nd	Wed., 29th	Fri., 1st	Wed., 6th	Wed., 13th	Fri., 15th (End of Run)
Farget Fabri. & Comm.			Lamiaa El Fassi																			
Week 1		ł	lamza Atta	æ																		
Week 2				Sa	angback L	ee																
Week 1										Utsav Shrestha												
Week 2										Susan S	Schadmand											
Week 3											Susan Sch	admand										
Week 4												Utsav Sl	nrestha									
Week 5					Cancel	ed			τMo		re here		Susan So	chadmand								
Week 6				du	e to the	targe	t		we are	are		5		Susan Sch	admand							
Week 7					work de	elav	•								Raphael	Dupre						
Week 8					worku	cituy										Susan So	hadmand					
Week 9																	Mikhail	Yurov				
Week 10																		Susan	Scha	dmand		
Week 11																				Whitney	Armstrong	
Week 12																					Lamiaa l	El Fassi

RG-D Commissioning Plan

 Developped based on Nathan's RG-D Special Runs compiled after the meeting with Hall B detector experts back in July:

			meen aproa aao	
Task	Special Run	Target	Solenoid fast	
Beam Tuning	Tagger: New Møller Quad. PS		LCW fluctuation	
	Faraday Cup			
Trigger Validation	30 kHz Random Trigger (@ 35 nA) to validate Electron trigger	I	Performed for Inbending and	
	Trigger w/. no-DC-roads (@ 35 nA) to validate trigger roads	LD ₂	Low-Q ² suppression	
DC HV Scan, TOF Gain & ECAL Calib.	4 runs @ 35 nA to scan 4 DC (R ₁ , R ₂ , R ₃) HVs: (9,9,9), (10,10,10); (10,11,11) & (11,12,12)			
Alignment	10 M @ 1 nA in FD	Empty		
Luminosity Scan High B-Cur. Scan	5, 20, 35, and 50 nA 75 and 100 nA			
	10 / [2045] / 45 / [50–90] / 75 nA	CxC		
Luminosity Scan	100 / [110130] nA / 130/ [150–200]/ 150/175 nA	CuSn		
ECAL Calib.	Outbending Config.: 50 M @ 35 nA	LD_2	8	

RG-D Data Processing Summary

• RG-D Cooking Configuration

- cooking chef account set up (Nathan)
- new coatjava release 10.0.4 (several fixes)
- updated yaml files and approriate schemas (Raffaella)
- got trained on workflow preparation and submission

Cooking Requests Summary

- Trigger studies: In/Out, DC roads
- Calibration: Gain, ECal, HTTCC, In/Out, 1st full
- DC: HV scan
- Luminosity scan: In/Out, Convn./AI/Denoised
- CVT: alignment, efficiency, calibration
- AI trigger studies: Level-3 AI/Denoised
- Physics: first DST after full calibration
- Alignmetn (Raffaella)

RG-D Pass0 Cooking

Timelines; See D. Carman talk

- automated cooking of available runs
- daily corresponding timline generation
- started with pass0.1 until first full calibration
- relaunched on Nov 2 with pass0.2

RG-D Outputs Location

/volatile/clas12/rg-d/production/trig /volatile/clas12/rg-d/production/calib /volatile/clas12/rg-d/production/dchv /volatile/clas12/rg-d/production/lumi /volatile/clas12/rg-d/production/cvt /volatile/clas12/rg-d/production/trig/v3_ai /volatile/clas12/rg-d/production/prod

/volatile/clas12/rg-d/production/pass0.1 /volatile/clas12/rg-d/production/pass0.2 /volatile/clas12/rg-d/production/tline

Info summarized @ https://clasweb.jlab.org/wiki/index.php/Run_Group_D#tab=Data_Processing_2

Lamiaa El Fassi

Trigger Validation

- Processed dedicated runs with the appropriate schema requested by the trigger group:
 - Many thanks to Valery Kubarovsky, Ben Raydo and Rafayel Paremuzyan for preparing and validating our trigger files.

Trigger Validation

- Processed dedicated runs with the appropriate schema requested by the trigger group:
 - Many thanks to Valery Kubarovsky, Ben Raydo and Rafayel Paremuzyan for preparing and validating our trigger files.

DC Efficiency Scan

- Previous conclusion from RGC scan: (10,11,11) might be optimal
- 4 Settings for RGD study (R1,R2,R3)
 - (9,9,9)
 - (10,10,10) -> used in RGM and RGC
 - (10,11,11)
 - (11,12,12)
- Analysis with 'dclayeffi' program from Veronique, done by Aron Kripko
- Gains between R1 and R2/R3 are similar for setting 10,11,11

Courtesy of Florian Hauenstein

Detector Efficiency (all superlayers) from RGD

Online Calibration & Alignment Status

- Summarized @ https://clasweb.jlab.org/wiki/index.php/Run_Group_D#tab=Calibration_and_Alignment:
 - Many thanks to detector and calibration experts (*CALCOM group in general*) for their efforts to calibrate and align the RG-D data online.

Online Calibration w/. Outbending Data

Oct. 31st, 2023

• FTOF: Daniel calibrated the attenuation length, effective velocity, gain balance, status, time walk, time walk position, time offsets, and timing resolution using a run 18437. Constants applied to a run range 18419-infinity; see his HBLOG entry #: 4212976 🛃.

Oct. 28th, 2023

🔹 FTOF: Gain & HV tables were updated by Daniel using the outbending run 18437; see HBLOG entry #: 4210799 🛃

Oct. 26th, 2023

Beam Offset: Mariana Tenorio, in coordination with Raffaella, extracted beam offsets using the outbending run 18437 that was processed after the DC alignment; see HBLOG entry #: 4209436 😭.

Oct. 24th, 2023

• CTOF: Daniel calibrated the attenuation length, effective velocity, gain balance, status, time offsets, hposbin, and tres using run 18437. Constants applied to a run range 18419-infinity; see his HBLOG entry #: 4207408 😭

Oct. 20th, 2023

🗉 DC: Florian updated the T2D pressure dependence using the RG-K fall 2018 pass2 calibration constants for the outbending runs starting from run 18419; see HBLOG entry #: 4203834 😭

Oct. 14th, 2023

Ecal: FTIME and DTIME tables were adjusted to zero residual offsets based on the outbending run 18419 for the whole datasets (18300 - Inf.); see HBLOG entry #: 4199712 3; Gain and attenuation tables were updated by Cole using the outbending run 18419 for the range (18418 - Inf); see HBLOG entry #: 4199724 3;

Online Calibration/Alignment w/. Empty Target

Oct. 31st, 2023

• Yuri Gotra uploaded the CVT alignment constants extracted using the run 18316 to the RG-D variation "rgd_fall2023"; see HBLOG entry #: 4213129 🛃.

oct. 20th, 2023 See M. Maynes' talk

Raffaella and Matthew completed the third DC alignment iteration using the run 18316, which included a y-shift of 0.715 cm to account for the beam offset; see the info recorded on the rgd_fall2023 variation 2.

Oct. 17th, 2023

• Yuri Gotra uploaded RG-C CVT alignment constants to the RG-D variation "rgd_fall2023" as the initial constants for FD alignment, calibration, and cooking; see HBLOG entry #: 4201866 🔂.

Oct. 11th, 2023

DC: Florian loaded the T2D calibration constants to CCDB, which were extracted using the alignment run 18316; see HBLOG entry #: 4197254 🚱.

Online Calibration & Alignment Status

- Summarized @ https://clasweb.jlab.org/wiki/index.php/Run_Group_D#tab=Calibration_and_Alignment:
 - Many thanks to detector and calibration experts (*CALCOM group in general*) for their efforts to calibrate and align the RG-D data online.

Online Calibration w/. Inbending Data

Oct. 31st, 2023

- DC: Florian performed T0 time offsets calibration with individual sector/superlayer offsets (T00) based on Run 18335 (inbending) with results from 18437 (outbending) for Sec1SL6 due to bad fits for run 18335. Also, a correction was done for the cable swaps in sectors 1 and 4, which were present in previous run groups but do not apply to RG-D. Constants applied to a run range of 18000-infinity; see his HBLOG entry #: 4213246 2.
- FTOF: Daniel calibrated the attenuation length, effective velocity, gain balance, status, time walk, time walk position, time offsets, and timing resolution using a run 18335. Constants applied to a run range 18305-18401; see his HBLOG entry #: 4212976 🛃

Oct. 26th, 2023

🖷 Beam Offset: Mariana Tenorio, in coordination with Raffaella, extracted beam offsets using the inbending run 18335 that was processed after the DC alignment; see HBLOG entry #: 4209436 😭

Oct. 25th, 2023

🔹 Ecal: FTIME and DTIME tables were adjusted to zero residual offsets based on the inbending calibration of a run 18335. It's applied to the run range 18300 - 18417; see HBLOG entry #: 4208437 😭

Oct. 24th, 2023

CTOF: Daniel calibrated the attenuation length, effective velocity, gain balance, status, time offsets, hposbin, and tres using run 18335. Constants applied to a run range 18305-18401; see his HBLOG entry #: 4207408 developments.

Oct. 20th, 2023

- CTOF: Daniel calibrated the TDC-FADC time offset using run 18355. He also adjusted the 4 ns shift of some run ranges 18343-18344, 18360-18366, 18376-18377, 18420-18422, and 18475-18478 using the TDC-FADC time offset calibration of run 18362; see his HBLOG entry #: 4203856 😭.
- CC: Florian updated the T0 DC time offsets with individual sector/superlayer offsets (T00) based on inbending run 18333 for Sec4SL6 and Sec6SL6 due to bad fits of this run in the Pass0.1 timeines @; see HBLOG entry #: 4203834 @

Oct. 10th, 2023

🔹 ECAL & PCAL: Cole updated the HV tables using the inbending run 18312 while being down due to the solenoid trip in the Swing shift; see HBLOG entry #: 4196847 😭

Oct. 9th, 2023

🔹 DC: Florian Hauenstein performed T2D calibration using the alignment run 18316; see HBLOG entry #: 4196249 🛃

Oct. 8th, 2023

🔹 RF: Raffaella updated the "RF offsets" using the inbending run 18309; see HBLOG entry #: 4195642 😭

Oct. 6th, 2023

- HTCC: Gain and Time calibration was done by Izzy Illari using the inbending run 18309; see HBLOG entry #: 4194103 G; Gain tables, "CTOF_HTCC/adcctof1_gain.cnf", used in the trigger were updated by Izzy using the inbending run 18309; see HBLOG entry #: 4194054 G.
- Ecal: Gain and Attenuation were updated by Cole Smith using the inbending run 18312; see HBLOG entry #: 4194393 🔂;
 - : Time calibration was done by Cole using the inbending run 18312; see HBLOG entry #: 4194914 🐼;
- 🗉 FTOF: Gain & HV tables were updated by Daniel using the inbending run 18312; see HBLOG entry #: 4193839 🛃
- 🔹 CTOF: Gain & HV tables were updated by Daniel Carman using the inbending runs 18309 & 18312; see HBLOG entry #: 4193758 😭

Sept. 29th, 2023

Raffaella De Vita set the RF clock to 2.004 ns (64 cycles @ 500 MHz electron bunch frequency) for the RG-D run period since only three halls are running; see HBLOG entry #: 4189477 😰

Luminosity Scan AI-assisted Study

• Many thanks to Raffaella De Vita and Gagik Gavalian for their coordination to obtain these results.

Target & Current Setting

- Approved beam currents and target thicknesses (*within 2% X*₀) for production runs;
 - Currents can be increased up to ~ 100 nA for LD₂ and CxC (150 for CuSn) and ~ 200 nA for LH₂ in luminosity scans and detector efficiency studies.

Targets	Thickness (2 foils) (cm)	Density (g.cm ⁻³)	Areal Density (T) (mg.cm ⁻²)	Radiation Length (X ₀) (g.cm ⁻²)	Radiation Lengths (T/X ₀) (%)	Beam Current (nA)	Per-nucleon Luminosity (10 ³⁵ cm ⁻² s ⁻¹)
LH ₂	5	0.071	355	63.04	0.56	100	1.3
LD_2	5	0.164	820	125.98	0.65	50 (/ 60)	1.5 (/ 1.8)
¹² C	0.2 (0.4)	2.2	440	42.7	1.03 (2.06)	50	1.7
⁶³ Cu / ¹²⁰ Sn	0.0093 / 0.0171	8.96 / 7.31	83.33 / 125	12.86 / 8.82	0.65 / 1.417	150	1.2

RG-D Target & Current Setting

- Approved beam currents and target thicknesses (*within 2%* X_0) for production runs;
 - ✓ Currents can be increased up to ~ 100 nA for LD₂ and CxC (150 for CuSn) and ~ 200 nA for LH₂ in luminosity scans and detector efficiency studies.
 - Lesson learned from Lumi. scans:

RG-D Target & Current Setting

- Approved beam currents and target thicknesses (*within 2%* X_0) for production runs;
 - ✓ Currents can be increased up to ~ 100 nA for LD₂ and CxC (150 for CuSn) and ~ 200 nA for LH₂ in luminosity scans and detector efficiency studies.
 - Lesson learned from Lumi. scans:

To protect CD, MVT & SVT, from X-ray radiation damage caused by Sn and maintain their long-term efficiency, the consensus was reached to reduce the production beam current of this target configuration and extend the RG-D run-period to achieve the desired statistics for Cu and Sn targets.

Lamiaa El Fassi

RG-D Target & Current Setting

- Approved beam currents and target thicknesses (*within 2% X_0*) for production runs;
 - Currents can be increased up to ~ 100 nA for LD₂ and CxC (150 for CuSn) and ~ 200 nA for LH₂ in luminosity scans and detector efficiency studies.
 - To protect CD, MVT & SVT, from X-ray radiation damage caused by Sn and maintain their long-term efficiency, the consensus was reached to reduce the production beam current of this target configuration and extend the RG-D run-period to achieve the desired statistics for Cu and Sn targets:

Targets	Thickness (2 foils) (cm)	Density (g.cm ⁻³)	Areal Density (T) (mg.cm ⁻²)	Radiation Length (X ₀) (g.cm ⁻²)	Radiation Lengths (T/X ₀) (%)	Beam Current (nA)	Per-nucleon Luminosity (10 ³⁵ cm ⁻² s ⁻¹)
LH ₂	5	0.071	355	63.04	0.56	100	1.3
LD_2	5	0.164	820	125.98	0.65	50 (/ 60)	1.5 (/ 1.8)
¹² C	0.2 (0.4)	2.2	440	42.7	1.03 (2.06)	50	1.7
⁶³ Cu / ¹²⁰ Sn	0.0093 / 0.0171	8.96 / 7.31	83.33 / 125	12.86 / 8.82	0.65 / 1.417	95	0.76

Revised Run Plan

• More beam-time is allocated to CuSn, but less to LD₂ & CxC due to their current reach!

Targets Configuration (Current Setting)	Beam Time (PAC days)
LD ₂ (@ 35 - 50 nA)	1.5
CuSn (@ 130 → 100 nA)	4
LD ₂ (@ 50 nA)	1.5
CxC (@ 50 nA)	3.5
LD ₂ (@ 60 nA)	0.5
CuSn (@ 90 - 95 nA)	3.5
LD ₂ (@ 60 nA)	1
CxC (@ 50 nA)	2.2
LD ₂ (@ 60 nA)	0.5
CuSn (@ 95 nA)	8
LD ₂ (@ 60 nA)	0.5
CuSn (@ 95 nA)	3
LD ₂ (@ 60 nA)	0.5
$LH_2 + target change + Møller Meas.$	2

Current Status of Accumulated Data

 No Faraday Cup info due to ion pump failure, thus rely on the current reading from the upstream beam position/current monitor, 2C21A.

Vertex Cuts for Cu & Sn Separation

Vertex Cuts for Cu & Sn Separation

Online RG-D Analysis: Invariant Mass Comparison

Online RG-D Analysis: Invariant Mass Comparison

Summary Notes

 More analysis results for yield extraction, etc, will be shared soon in our RC/OA meeting!

Summary Notes

- More analysis results for yield extraction, etc, will be shared soon in our RC/OA meeting!
- Special thanks to everyone contributing to make RG-D run a success:
 - Hall B staff, engineers, technicians, and leadership;
 - Detector and calibration experts;
 - ✓ Target group;
 - Physics and Accelerator divisions;
 - ✓ PDL;
 - Run coordinators;
 - ✓ Shift takers;
 - Cooking chef;
 - RG and analyzers;
 - Collaboration as a whole, especially for accommodating RG-D to extend and complete its data-taking due to CuSn run restrictions.

Backup Slides

Previous Run Plan & Expected Projections

• Run plan for 60 calendar days:

Targets Configurations	Beam Time (PAC days)
¹² C / ¹² C (each 0.2 cm thick)	7
LD ₂	7
⁶³ Cu / ¹²⁰ Sn (0.0093/0.0171 cm thick)	14
Lumi. scan + target change + Moller Meas.	2

• Expected statistical precision for the lowest l_c bin:

Q²(GeV²) / Targets	1.5 ± 0.5	2.25 ± 0.25	2.75 ± 0.25	3.25 ± 0.25	4.0 ± 0.5	5.25 ± 0.75
¹² C (%)	1.1	1.5	2.0	2.7	4.6	6.1
⁶³ Cu (%)	1.3	1.7	2.1	3.1	4.8	6.3
¹²⁰ Sn (%)	1.3	1.8	2.6	3.2	4.8	6.3
1/08/23		Li	amiaa El Fassi			చ

Negative Polarity Data

• The reconstructed ρ^0 invariant mass distribution in our kinematics range,

11/08/23

Two-pion Invariant Mass

• Our event generator incorporates the measured cross sections for the electroproduction of ρ^0 and main background processes by Cassel *et al.*

D. G. Cassel et al., Phys. Rev. D 24, 2787 (1981)

ρ^0 Electro-production Kinematics

ν = E − E': virtual photon (γ*) energy in the Lab frame, *Q*² = -(P_e- P_{e'})² = 4 E E'sin²(θ/2): photon virtuality, *t* = (P_{γ*} - P_ρ)²: momentum transfer square,

→ $W^2 = (P_{in} + P_{\gamma^*})^2 = -Q^2 + M_p^2 + 2M_p v$: invariant mass squared in (γ^* , p) center of mass (CM).

● W > 2 GeV

 \Rightarrow avoid resonance region

• -t < 0.4 GeV²
 ⇒ select diffractive process

• -t > 0.1 GeV²
 ⇒ exclude coherent production

• $Z_h = E_h / v \ge 0.9$ \Rightarrow select elastic channel