CLAS12 Collaboration Meeting

November 9, 2023

Detached Vertex Reconstruction

Veronique Ziegler

Detached Vertex Finder Algorithm

- 1. For each track
 - Swim backwards to fixed Z to get starting point of trajectory
 - Swim forward to fixed Z to get starting point of trajectory
- 2. Compute Doca of track2(1) to track1(2) obtained from swimming track2(1) where the swimming is stopped when the Doca to trajectory2(1) is minimal
- Compute r as the distance between the so-obtained doca points of each track

MC Vertex Resolution with Detached Vertex Finder

class

K Lambda MC + 35 nA Bg Validation

- Distributions centered
- Resolutions ~7 mm in xy, 1 cm in z are reasonable

Resolution (r<1.5 cm)

Banks Structures: Storing Decay Chains Info

	next prev seq # 5 true # 61971														REC: infor	REC::VertDoca information is • Position x				
	index1	index2	x	У	z	x1	y1	z1	cx1	cy1	cz1	x2	y2	z2	cx2	cy2	cz2	r	•	2-tracks m
1	0	3	0.23567	0.19718	-4.84147	0.02829	-0.12346	-4.88774	-1.06517	1.08930	6.48670	0.44304	0.51783	-4.79521	0.77950	-0.37302	1.64688	0.76931	•	r : doca be
2	1	3	-0.44799	0.44935	-5.99327	-0.83723	0.13774	-6.12868	0.44936	-0.26925	0.66935	-0.05876	0.76095	-5.85787	0.77585	-0.38055	1.64688	1.03332		
3	2	3	-2.08079	-0.51498	-8.20317	-3.00314	-2.34494	-8.20176	0.42425	-0.20998	0.64193	-1.15843	1.31497	-8.20457	0.76755	-0.39703	1.64688	4.09853		
																				(x1,y1
0	REC::Particle																			

	next p	orev seq #	5 t	rue # 61971							
	pid	рх	ру	pz	vx	vy	vz	charge	beta	chi2pid	status
1	11	-1.06468	1.08978	6.48670	-0.00368	-0.09075	-4.69303	-1	1.00000	0.22344	-2232
2	-321	0.44785	-0.28637	0.67867	-0.15772	-0.22882	-5.13944	-1	0.90090	-0.95951	4100
3	-211	0.41435	-0.22890	0.64194	-1.74117	-3.00539	-6.27005	-1	0.98306	0.57529	2230
4	2212	0.77799	-0.37616	1.64688	0.23367	0.61854	-5.23798	1	0.88327	2.43717	2200
5	22	-0.13455	-0.33449	1.09944	-0.00368	-0.09075	-4.69303	0	1.01277	9999.00000	2020
6	22	0.07992	-0.01862	0.12999	-0.00368	-0.09075	-4.69303	0	0.91234	9999.00000	2010

- Position x,y,z of reco displaced vtx
- 2-tracks momenta: cxi, cyi, czi
- r : doca between tracks

Mapping of the VertDoca to the Particle bank:

٠

Index 1 and 2 of the 2 particles in the VertDoca bank correspond to the row index (starts at 0) in the Particle bank.

Vertexing* for Lambda Reconstruction (RGK) close

* Charged tracks pair common vertex reconstruction

- Selection of ep \rightarrow e (p π^{-}) X events using Fall18 RGK data
 - e- reconstructed in EC
 - e- reconstructed in FT (FT sample)
 - X required to be identified as kaon by the EB (no additional PID cuts \rightarrow high pion contamination)
 - Subsequential PID cuts (reconstructed kaon mass) to clean up the sample
 - Require the vertex between p and π^- to be reconstructed with doca<5 cm
- Comparison of spectra using the momenta of the p and π⁻ corrected at the reconstructed vertex of the (pπ–) pair to the spectra obtained using the momenta from the EB bank (REC::Particle), which is reported at the DOCA to the beamline (FD) or the using the Beam Spot (CD; momenta without Beam Spot constrained also saved)
 - Comparison of resolutions for different event selection criteria
- The reconstruction of the Λ→pπ⁻ candidate uses the momenta of the p and π⁻ at the reconstructed vertex
 - Signal to background ratios studied as a function of the vertex displacement with respect of a reference vertex (in this case the kaon, since the e- vertex is not determined for FT events)

Vertexing* for Lambda Reconstruction (RGK) close

Distributions m($p\pi^-$) using selection criteria:

- e in EC
- p_T(p) > 250 MeV
- Require K⁺ in REC::Particle (EB)
 - Loose PID: kaon misID→high bg.

Failure to use the momenta reconstructed at the right position along the track trajectory, leads to degradation of the resolution of the reconstructed ($p\pi^-$) invariant mass spectrum.

Under high background conditions, this results in a significant loss of signal.

Vertexing* for Lambda Reconstruction (RGK) close

Selecting events with displaced (pπ⁻) vertexes (wrt K⁺ track vertex)

- 2.5 mm in XY
- 2.5 cm in Z
- To reduce high-mass background on the right-hand side of the expected peak

Distributions m($p\pi^{-}$) using selection criteria:

- e in EC
- p_T(p) > 250 MeV
- Require K⁺ in REC::Particle (EB)
 - Loose PID: kaon misID→high bg.

Signal-to-background ratio improvement observed only when the correct momenta are used in the invariant mass computation

Vertexing^{*} for Lambda Reconstruction (RGK) close

Both the p and the $\pi^$ reconstructed in the FD

Distributions m($p\pi$ –) using selection criteria:

- e in EC
- $p_{T}(p) > 250 \text{ MeV}$ •
- Require K⁺ in REC::Particle (EB)
 - Loose PID: kaon misID \rightarrow high bg.

Improved signal resolution with track pair vertexing – resulting from better momentum resolution in FD – not seen without track pair vertexing

Using particle momenta from EB Using particle momenta from at reconstructed (p π -) vertex

Vertexing* for Lambda Reconstruction (RGK)closs

With the K⁺ **reconstructed in the FD**, the peak is visible using the particle momenta from EB, but with worse resolution

Distributions m($p\pi^{-}$) using selection criteria:

- e in EC
- p_T(p) > 250 MeV
- Require K⁺ in REC::Particle (EB)
 - Require K in FD
 - Chi2pid(K) < 15

Without track pair vertexing, exclusivity cut (i.e. requiring a clean kaon from the FD in the event) needed to observe a Lambda signal.

signal

analysis

S/B: [no vtx cuts] 1.0 \rightarrow [max vtx cuts] 1.6 \triangle Yield ~ 20% yield reduction

from Vtx cuts

∆(V(pπ)XY

- Results without requiring a kaon in the event
 - Although the background is higher, clear signal obtained
 - Possibility to study various channels where S/B ration and signal resolution essential

Vertexing for Lambda Reconstruction (RGK) close

Cutting on displaced vertex leads to

- Better signal to background ratio
 - For some channels they are needed to observe a signal
- Some loss of events
 - Expected
 - In some instances these cuts result in reduced significance and are not useful.

Selection of these cut reaction and kinematics dependent

• Must be evaluated based on other cuts (PID)

Next ... Sequential Decays

V0

Ch (-)

Ch (+)

 $Ch_{2}(-)$

- V0 + Ch (i.e. $\Omega^{-} \rightarrow \Lambda(\rightarrow p \pi^{-}) K^{-}$)
 - Create a trajectory for V0
 - Use trajectory of Ch
 - Same interpolation method between 2 trajectories
 - Vertex of Ch₂ (-) and momentum updates

• DOCA between 2 lines

In development in my analysis package, algorithm to be included as methods in Vtx package
Validation in progress

Banks Structures: Storing Decay Chains Info clo

	REC::VertDoca																	
														Reaction P \rightarrow D ₁ + D ₂				
next prev sed # 2 true # 019/1														$D \rightarrow C + C$				
	index1	index2	x	У	z	x1	y1	z1	cx1	cy1	cz1	x2	y2	z2	cx2	cy2	cz2 r	$D_1 \rightarrow G_1 + G_2$
1	0	3	0.23567	0.19718	-4.84147	0.02829	-0.12346	-4.88774	-1.06517	1.08930	6.48670	0.44304	0.51783	-4.79521	0.77950	-0.37302	L.64688 0.76931	RFC··ANAL structure
3	2	3	-0.44799	-0.51498	-3.99327	-3.00314	-2.34494	-8.20176	0.44936	-0.20925	0.66933	-1.15843	1.31497	-3.85787	0.76755	-0.39703	L.64688 4.09853	
												Row 1: P						
R														Row 2: D ₁				
									RFC···Pa	rticle								
									REC.II d	ittere								\mathbf{ROW} 5. \mathbf{G}_1
	next	pre	ev se	eq # 5		true # 619	71											Row 4: G ₂
	р	id	рх		ру	pz		vx		vy	vz		charge	be	eta	chi2pid	status	Bow 5: Da
1	1	1	-1.06468	3 1	.08978	6.486	70	-0.00368	-0.	.09075	-4.693	303	-1	1.00	0000	0.22344	-2232	
2	-3	21 11	0.44785	-(0.28637	0.678	67 04	-0.15772	-0.	00539	-5.139	944	-1	0.90	1090 1306	-0.95951	4100	
4	22	12	0.77799	-(0.37616	1.646	88	0.23367	0.0	61854	-5.237	798	1	0.30	327	2.43717	2200	Reaction $P \rightarrow D_1 + D_2$
5	2	2	-0.13455	; –(0.33449	1.099	44	-0.00368	-0.	.09075	-4.693	303	0	1.01	.277	9999.00000	2020	$D_{1} \rightarrow G_{1} + G_{2}$
6	2	2	0.07992	-(0.01862	0.129	99	-0.00368	-0.	.09075	-4.693	303	0	0.91	.234	9999.00000	2010	
													$D_2 \rightarrow G_3 + G_4$					
									ΛΝΙΛΙ	··Dor	ticlo							REC. ANAL structure
								/	ANAL	Pdf	licie	_						RECANAL STRUCTURE.
	next	p	rev	seq # 5		true # 61	971											Row 1: P
	idx	pid en	nc erec	е	ovx ov	/y ovz	рх	ру	oz upx	upy	upz	vx vy	vz	r cha	arge mass	ndau da	u1ic dau2ic det	Row 2: D ₁
1	200	999 3.85	590! 3.8604	3.8757(-	-0.003(-0.0	090: -4.693	1.6351	-0.886 2.9	581(1.635	6 -0.884	2.9581 -1	130: -0.39	0 -6.673	3.6096 -	1 1.6769	2 1	00 2 -1	
2 3	100 ·	3122 2.87 2212 2.08	610 2.9169	2.8928, -	-1.1300.	390, -6.673 514(-8 203	0.7675	-0.607 2.2	888. 1.192 468: 0.777	<mark>3 -0.605(</mark> 9 -0.376	2.2888 -2 1.6468 -1	158, 1 314	<u>4' -8.203</u>	4.0985	0 1.1579 1 0.9382	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Row 3: G_1
4	3	-211 0.80	097: 0.8113	0.8097/ -	2.080 -0.	514! -8.203	0.4242!	-0.209 0.6	419: 0.414	3 -0.228!	0.6419 -3	3.003: -2.34	4 -8.201	0.0 -	1 0.1395	5 0	0 0 1	Row A: G
5	2	-321 0.98	329: 0.9434	0.9829: -	1.130 -0.	390: -6.673	0.4433	-0.279 0.6	693! 0.443	3 -0.279(0.6693 -0	0.180: -0.26	55 -5.144	0.0 -	1 0.4936	5 0	0 0 0	1000 4. 02
	idx: RE	C::Particle	row		D				+ \/+\		rracted					dauld	с:	Row 5: D_2
					ov: Pare	TIL VLX	h : h co	rrected (a	u vix)	unce		/tw / data al	and) or fre			REC::P	article row	Pow 6: G
		ama	. mass co	actrained	energy						v: v	nix (uetaci	n detach	on trke			det:	
		CIIIC	• mass-coi	ISU AIIIEU	energy	. (Da		n-uclacile				FD (1) or	Row 7: G_4
			erec: re	econstruct	ted energ	y (EB)											CD (0) det.	
				e: energy	y used in a	anal (MCst	or rec.)										system	20

SUMMARY

- Vertex reconstruction implemented for opposite-charge track pairs
 - Creates entries in REC::VertDoca bank
 - Lambda invariant mass reconstruction using this bank
 - Significant improvement in signal resolution
 - Vertex cuts can potentially improve signal significance (background reduction)
- Further development for combination of various track pairs
- Code currently available in a branch under coatjava distribution
 - detachedVtx
 - Not yet merged
 - Reconstruction time profiling to be done
 - Uses swimming which is compute intensive

BACK-UP SLIDES

Vertexing^{*} for Lambda Reconstruction (RGK)closs

Using particle momenta from EB

Using particle momenta from at reconstructed (p π -) vertex

 Improved signal resolution with momenta obtained with decay particles momenta corrected at the vertex