CLAS Collaboration Meeting

Inclusive Cross Sections with CLAS12 RG-A Data

11/09/2023

* contact person valerii.klimenko@uconn.edu

LGDNN THE GRADUATE SCHOOL

V. Klimenko*, University of Connecticut

(e,e'X) Cross Sections from New CLAS12 Dataset (RG-A Inbending Runs)

- RG-A Fall 2018
- Beam energy: 10.6 GeV
- Torus/Solenoid: -100%/-100% (inbending)
- Beam current: 45 55 nA
- Faraday cup charge: 3 * 10⁷ nC
- CLAS kinematic coverage:
 - $0.225 < Q^2 < 4.5 \text{ GeV}^2$
 - 1.0815 < W < 2.4 GeV
- CLAS12 kinematic coverage:
 - $0.5 < Q^2 < 10 \text{ GeV}^2$
 - 0.1 < W < 2.5 GeV

Extension of the inclusive electron scattering cross sections up to $Q^2 \sim 10 \text{ GeV}^2$ within a broad W-range W<2.5 GeV in each bin of Q^2

Inclusive Cross Section from (e,e'X) Event Yield

$$\frac{d\sigma}{dQ^2 dW} = \frac{1}{\Delta Q^2 \Delta W} \cdot \frac{N}{\eta \cdot R \cdot BS \cdot N_0} \cdot \frac{N}{N_A}$$

- η product of geometrical acceptance and electron detection efficiency
- R radiative correction factor
- BS bin-size correction

$\frac{1}{A\rho t/A_{\omega}}$ (1)

Acceptance Corrections

- Measurement is distorted and transformed by various effects such as finite resolution, limited acceptance of the • detector, and detection efficiency so a correction is required
- Basic method for acceptance correction is **bin-by-bin** method that was used as a reference

 $Acceptance = \frac{\# Events Reconstructed}{\# Events Generated}$

Matrix deconvolution method was used as a nominal method to minimize bin migration and EG dependence

Matrix Deconvolution

Acceptance Matrix: A_(i,i) describes both acceptance (geometrical acceptance and detector efficiency) and bin • migration:

Events Generated in bin j but Reconstructed in bin i Total number of Events Generated in the jth bin

Acceptance unfolding: $Y_i = A_{(i,j)}X_j => X_j = A^{-1}_{(i,j)}Y_i$ where Y_i number of measured events in i-th bin, X_j is number of acceptance corrected events in j-th bin

We studied two different methods:

CERN RooUnfold package was used: https://gitlab.cern.ch/RooUnfold/RooUnfold

Radiative Corrections

Each (Q²,W) bin was divided into 21x11 sub-bins. Cross Sections with rad. effects on and off were calculated in every sub-bin.

Radiative Correction factor: Mean Cross Section (Rad) Mean Cross Section (No Rad)

UCONN

Bin-Size Corrections

Each (Q^2,W) bin was divided into (the same) 21x11 sub-bins. Mean Cross Section (No Rad) BS Corrections (BSC) =

Cross Section (No Rad) in the central point

Preliminary (e,e'X) Cross Sections

Status and Path Towards Publication

- Analysis Note submitted on August 9 for Working Group review
- First round review comments received on September 11 (69 comments)
- Main issues have been worked out:
 - New torus field map (non-symmetric field map) •
 - Target position and size •
 - Momentum smearing procedure •
 - Updates to systematic uncertainty sources (FC charge, background merging) •
 - Improved explanations of procedures based on review questions/comments •
- We are working on finalizing the answers (prepare updated analysis note + reply document to address each comment from the analysis review
- Draft of a paper is prepared. Will be further developed for upcoming ad hoc review.

Studies of Non-Symmetric Torus Map

We used two torus maps:

- Symm_torus_r2501_phi16_z251_24Apr2018 (symmetric)
- Full_torus_r251_phi181_z251_25Jan2021 (non-symmetric)

We performed two MCs:

GEMC 5.4 symm. map + REC 5.0.2_6.5.6.2 symm. map GEMC 5.4 non-symm. map + REC 5.0.2_6.5.6.2 symm. map

We then extracted the cross sections and compared them

Updated Torus Map Sectors Grouping

Cross sections sector by sector for symmetric map. Sectors 1-6 are shown in black, red, green, blue, yellow, and magenta respectively.

Updated Torus Map Sectors Grouping

Cross sections sector by sector for **non-symmetric map**. Sectors 1-6 are shown in black, red, green, blue, yellow, and magenta respectively.

Updated Torus Map

Black – Symmetric Red – Non-symmetric

Z Vertex Shift

- Finite Element Analysis of the RG-A cryotarget showed that the center of the target cell moves • upstream by -4.858 mm when the target is cooled to its operating temperature relative to its z position at room temperature.
- Target length is 5.0+/-0.05 cm with +/-0.05 cm being the dimensional tolerance. The effect of the • differential pressure when filling with liquid hydrogen is negligible due to how the cell was constructed.

Work done by Bob Miller, Hall B Engineer

https://wiki.jlab.org/Hall-B/engineering/hallb_eng_wiki/images/8/8f/ Thermal_Expansion_of_Hall_B_Saclay_Target_Cell_at_Operating_Temperature.xlsx

Z Vertex Shift

We performed additional MC studies generating events with a z vertex coordinate in the range [-0.9858: -5.9858] cm, The effect is about 5% for the last Q² bin. $2.55 < Q^2 < 2.99 \text{ GeV}^2$ $2.99 < Q^2 < 3.49 \text{ GeV}^2$ ×10⁻³ ×10⁻³ $\frac{d\sigma}{dWdQ^2}, \frac{\mu b}{GeV^3}$ $\frac{d\sigma}{dWdQ^2}, \frac{\mu b}{GeV^3}$ 3.5 2 3 2.5 1.5 2 1.5 0.5 0.5 **0**^L **0**L ^{2.4} W 2.2 2.2 2.4 1.2 1.6 1.8 1.2 1.8 1.4 1.6 2 2 1.4 W $4.08 < Q^2 < 4.78 \text{ GeV}^2$ $4.78 < Q^2 < 5.59 \text{ GeV}^2$ ×10⁻³ <u>×10⁻³</u> $\frac{d\sigma}{dWdQ^2}, \frac{\mu b}{GeV^3}$ $\frac{d\sigma}{dWdQ^2}, \frac{\mu b}{GeV^3}$ 0.4 0.7 0.6 0.3 0.5 0.4 0.2 0.3 0.2 0.1 0.1 0 0^L ^{2.4} W ^{2.4} W 1.2 1.6 1.8 2.2 1.2 1.8 2.2 1.4 2 1.6 2 1.4 $6.53 < Q^2 < 7.64 \text{ GeV}^2$ $7.64 < Q^2 < 8.94 \text{ GeV}^2$ <u>×10⁻³</u> <u>×10⁻⁶</u> $\frac{d\sigma}{dWdQ^2} \stackrel{,}{,} \frac{\mu b}{GeV^3}$ $\frac{\mu b}{GeV^3}$ 0.12 50 0.1 40 0.08 dσ dWdQ² 30 0.06 20 0.04 10 0.02 0-0 ^{2.4} W 2.2 1.8 2.2 1.8 2.4 .6 2 .2 2 .2 .6 Δ W

Black – nominal Red – shifted z

Momentum Resolution Studies

 In order to extract GEMC resolution functions we fit P_{rec} inclusive and exclusive MC samples §.15^{×10⁶} 13.4<Θ< 14.6 _{×10⁶} 12.2<Θ< 13.4 11.0<Θ< 12.2 .0 € 30.3 0.25 0.5 0.1 0.4 0.2 0.15 0.3 0.05 0.2 0.' 0.05 0.1 ×10⁻³ ×10⁻³ 40 20 40 -20 20 40 -20 20 -20 0 0 0 $\Delta P/P_{REC}$ $\Delta P/P_{REC}$ $\Delta P/P_{REC}$ _{×10³} 18.2<Θ< 19.4 19.4<0< 20.6 17.0< Θ < 18.2 ×10³ $\times 10^{3}$ θV. ∌່ 12 15 10 ×10⁻³ '×10⁻³ -20 -20 20 40 -20 20 40 20 0 0 0 40 $\Delta P/P_{REC}$ $\Delta P/P_{REC}$ $\Delta P/P_{REC}$ $P_{gen} - P_{rec}$ for electrons in (ep $\rightarrow e\pi^+n$) MC Examples of UCONN Prec

 $\frac{P_{gen} - P_{rec}}{100}$ in Θ , P bins to obtain $\sigma(\Theta, P)$ from both

Momentum Resolution Studies

Example of GEMC resolution as a function of theta for e and π^+ (ep $\rightarrow e\pi^+n$) MC

Data vs. MC Comparison - Resolution Studies

- We introduce smearing function $P_{new} = P_{rec} * (1 + \sigma(\Theta, P) * F * gaus(0, 1))$ where F is a smearing factor
- Smearing factor obtained from matching $\frac{\Delta P}{P}$ for data and MC (ΔP is calculated using angles)
- $\mathbf{F} = 0$ does not introduce additional smearing $P_{new} = P_{rec}$

Data vs. MC Comparison - Resolution Studies

- 2.55 < Q² < 10.4 GeV², 1.15 < W < 2.5 GeV

Data vs. MC Comparison - Resolution Studies

UCONN_®

Momentum Smearing

Momentum smearing makes peaks more pronounced

- Red no Smearing
- Black with Smearing

21 class

Summary

- Main issues have been worked out, we are working on finalizing the responses. Should be ready soon.
- Preliminary results on inclusive electron scattering cross sections are available from CLAS12 in the kinematic range of 1.15 < W < 2.5 GeV and $2.55 < Q^2 < 10.4 \text{ GeV}^2$. Our new measurements show reasonable agreements with world data in overlapping Q² regions. Our data extend the knowledge towards high Q².
- Revised analysis note will be submitted as soon as possible.

Back Up

Inclusive Kinematics

Inclusive Resolution

Evaluation of the Inclusive Structure Functions F₁ and F₂ at 1.07 GeV <W< 4.0 GeV and 0.7 GeV² <Q²<4.0 GeV²

F₂ (W,Q²) structure functions were measured with CLAS in the N* region and interpolated onto the kinematic grid of interest by employing 2D polynomial interpolation

Osipenko et al. (CLAS Collaboration), Phys. Rev. D 67, 092001, 2003

Outside of the region covered by CLAS data, the parameterization of the world data was used: M.E. Christy and P.E. Bosted, Phys. Rev. C81, 055213 (2010). $F_1(W,Q^2)$ structure functions were computed from $F_2(W,Q^2)$ by employing the values of $R = \sigma_l / \sigma_t$ from the parameterization A.N. Hiller Blin et al., Phys. Rev. C104, 025201 (2021).