Inclusive Cross Sections with CLAS12 RG-A Data

V. Klimenko*, University of Connecticut
11/09/2023
* contact person
valerii.klimenko@uconn.edu

(e,e'X) Cross Sections from New CLAS12 Dataset (RG-A Inbending Runs)

- RG-A Fall 2018
- Beam energy: 10.6 GeV
- Torus/Solenoid: -100\%/-100\% (inbending)
- Beam current: $45-55 \mathrm{nA}$
- Faraday cup charge: 3 * $10^{7} \mathrm{nC}$
- CLAS kinematic coverage:
- $0.225<\mathrm{Q}^{2}<4.5 \mathrm{GeV}^{2}$
- $1.0815<\mathrm{W}<2.4 \mathrm{GeV}$
- CLAS12 kinematic coverage:
- $0.5<\mathrm{Q}^{2}<10 \mathrm{GeV}^{2}$
- $0.1<\mathrm{W}<2.5 \mathrm{GeV}$

Extension of the inclusive electron scattering cross sections up to $\mathrm{Q}^{2} \sim 10 \mathrm{GeV}^{2}$ within a broad W -range $\mathrm{W}<2.5 \mathrm{GeV}$ in each bin of Q^{2}

First CLAS12 measurement

Inclusive Cross Section from (e,e'X) Event Yield

$$
\frac{d \sigma}{d Q^{2} d W}=\frac{1}{\Delta Q^{2} \Delta W} \cdot \frac{N}{\eta \cdot R \cdot B S \cdot N_{0}} \cdot \frac{1}{N_{A} \rho t / A_{\omega}}
$$

- η - product of geometrical acceptance and electron detection efficiency
- R - radiative correction factor
- BS - bin-size correction

Acceptance Corrections

- Measurement is distorted and transformed by various effects such as finite resolution, limited acceptance of the detector, and detection efficiency so a correction is required
- Basic method for acceptance correction is bin-by-bin method that was used as a reference

$$
\text { Acceptance }=\frac{\# \text { Events Reconstructed }}{\# \text { Events Generated }}
$$

- Matrix deconvolution method was used as a nominal method to minimize bin migration and EG dependence

Matrix Deconvolution

- Acceptance Matrix: $\mathrm{A}_{(\mathrm{i}, \mathrm{j}}$ describes both acceptance (geometrical acceptance and detector efficiency) and bin migration:

$$
\mathrm{A}_{(\mathrm{i}, \mathrm{j})}=\frac{\text { \#vents Generated in bin } j \text { but Reconstructed in bin } i}{\text { Total number of Events Generated in the jth bin }}
$$

CERN RooUnfold package was used:
https://gitlab.cern.ch/RooUnfold/RooUnfold

Acceptance unfolding: $Y_{i}=A_{(i, j)} X_{j}=>X_{j}=A_{(i, j)}^{-1} Y_{i}$ where Y_{i} number of measured events in i-th bin, X_{j} is number of acceptance corrected events in j-th bin
We studied two different methods:

1. SVD
2. Bayesian Matrix 2D

Red - 2D Bayesian method Black - Bin-by-bin method COS

Radiative Corrections

Each $\left(Q^{2}, W\right)$ bin was divided into 21×11 sub-bins. Cross Sections with rad. effects on and off were calculated in every sub-bin.

Radiative Correction factor:
$\frac{\text { Mean Cross Section (Rad) }}{\text { Mean Cross Section (No Rad) }}$

$$
2.55<Q^{2}<2.99 \mathrm{GeV}^{2}
$$

Inclusive with radiative effects
Elastic with radiative effects

$$
2.99<Q^{2}<3.49 G e V^{2}
$$

Bin-Size Corrections

$$
\frac{d \sigma}{d Q^{2} d W}=\frac{1}{\Delta Q^{2} \Delta W} \cdot \frac{N}{\eta \cdot R \cdot B S \cdot N_{0}} \cdot \frac{1}{N_{A} \rho t / A_{\omega}}
$$

Each $\left(Q^{2}, W\right)$ bin was divided into (the same) 21×11 sub-bins.

$$
\text { BS Corrections }(\mathrm{BSC})=\frac{\text { Mean Cross Section (No Rad) }}{\text { Cross Section (No Rad) in the central point }}
$$

Preliminary (e,e'X) Cross Sections

- Preliminary CLAS12 measurements

- CLAS data (after interpolation into the grid of our experiment), Phys. Rev. D67, 092001 (2003)

Status and Path Towards Publication

- Analysis Note submitted on August 9 for Working Group review
- First round review comments received on September 11 (69 comments)
- Main issues have been worked out:
- New torus field map (non-symmetric field map)
- Target position and size
- Momentum smearing procedure
- Updates to systematic uncertainty sources (FC charge, background merging)
- Improved explanations of procedures based on review questions/comments
- We are working on finalizing the answers (prepare updated analysis note + reply document to address each comment from the analysis review
- Draft of a paper is prepared. Will be further developed for upcoming ad hoc review.

Studies of Non-Symmetric Torus Map

We used two torus maps:

- Symm_torus_r2501_phi16_z251_24Apr2018 (symmetric)
- Full_torus_r251_phi181_z251_25Jan2021 (non-symmetric)

We performed two MCs:
GEMC 5.4 symm. map + REC 5.0.2_6.5.6.2 symm. map
GEMC 5.4 non-symm. map + REC 5.0.2_6.5.6.2 symm. map
We then extracted the cross sections and compared them

Updated Torus Map Sectors Grouping

Cross sections sector by sector for symmetric map. Sectors 1-6 are shown in black, red, green, blue, yellow, and magenta respectively.

Updated Torus Map Sectors Grouping

Cross sections sector by sector for non-symmetric map. Sectors 1-6 are shown in black, red, green, blue, yellow, and magenta respectively.

Updated Torus Map

Black - Symmetric
Red - Non-symmetric

Cross sections with updated torus map:
Almost no effect on sector dependence 3% effect on integrated XSECs on average

Z Vertex Shift

- Finite Element Analysis of the RG-A cryotarget showed that the center of the target cell moves upstream by -4.858 mm when the target is cooled to its operating temperature relative to its z position at room temperature.
- Target length is $5.0+/-0.05 \mathrm{~cm}$ with $+/-0.05 \mathrm{~cm}$ being the dimensional tolerance. The effect of the differential pressure when filling with liquid hydrogen is negligible due to how the cell was constructed.

Work done by Bob Miller, Hall B Engineer

https://wiki.jlab.org/Hall-B/engineering/hallb eng wiki/images/8/8f/
Thermal Expansion of Hall B Saclay Target Cell at Operating Temperature.xlsx

Z Vertex Shift

Black - nominal
Red - shifted z

- We performed additional MC studies generating events with a z vertex coordinate in the range $[-0.9858:-5.9858] \mathrm{cm}$,
- The effect is about 5% for the last Q^{2} bin.

Momentum Resolution Studies

- In order to extract GEMC resolution functions we fit $\frac{P_{g e n}-P_{r e c}}{P_{\text {rec }}}$ in Θ, P bins to obtain $\sigma(\Theta, \mathrm{P})$ from both inclusive and exclusive MC samples

Examples of $\frac{P_{g e n}-P_{r e c}}{P_{\text {rec }}}$ for electrons in $\left(\mathrm{ep} \rightarrow \mathrm{e} \pi^{+} \mathrm{n}\right) \mathrm{MC}$

Momentum Resolution Studies

Example of GEMC resolution as a function of theta for e and $\pi^{+}\left(e p \rightarrow e \pi^{+} n\right) M C$

Data vs. MC Comparison - Resolution Studies

- We introduce smearing function $\mathrm{P}_{\text {new }}=\mathrm{P}_{\text {rec }}{ }^{*}\left(1+\sigma(\Theta, \mathrm{P}){ }^{*} \mathbf{F}\right.$ * gaus $\left.(0,1)\right)$ where \mathbf{F} is a smearing factor
- Smearing factor obtained from matching $\frac{\Delta P}{P}$ for data and $M C$ (ΔP is calculated using angles)
- $\mathbf{F}=0$ does not introduce additional smearing $P_{\text {new }}=P_{\text {rec }}$

Data vs. MC Comparison - Resolution Studies

- $2.55<\mathrm{Q}^{2}<10.4 \mathrm{GeV}^{2}, 1.15<\mathrm{W}<2.5 \mathrm{GeV}$
- Red - data
- Theta and P range truncated to make sure that fits are reliable
- Blue - MC

No smearing ($\mathrm{F}=0$)
After smearing, $F=1.7$

Data vs. MC Comparison - Resolution Studies

- Orange - Data
- Blue - MC after smearing
- Black - MC no smearing

Momentum Smearing

- Momentum smearing makes peaks more pronounced
- Red - no Smearing
- Black - with Smearing

Summary

- Main issues have been worked out, we are working on finalizing the responses. Should be ready soon.
- Preliminary results on inclusive electron scattering cross sections are available from CLAS12 in the kinematic range of 1.15 $<\mathrm{W}<2.5 \mathrm{GeV}$ and $2.55<\mathrm{Q}^{2}<10.4 \mathrm{GeV}^{2}$. Our new measurements show reasonable agreements with world data in overlapping Q^{2} regions. Our data extend the knowledge towards high Q^{2}.
- Revised analysis note will be submitted as soon as possible.

Back Up

Inclusive Kinematics

Inclusive Resolution

Evaluation of the Inclusive Structure Functions F_{1} and F_{2} at $1.07 \mathrm{GeV}<\mathrm{W}<4.0 \mathrm{GeV}$ and $0.7 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<4.0 \mathrm{GeV}^{2}$
$F_{2}\left(W, Q^{2}\right)$ structure functions were measured with CLAS in the N^{*} region and interpolated onto the kinematic grid of interest by employing 2D polynomial interpolation

Outside of the region covered by CLAS data, the parameterization of the world data was used: M.E. Christy and P.E. Bosted, Phys. Rev. C81, 055213 (2010).
$F_{1}\left(W, Q^{2}\right)$ structure functions were computed from $F_{2}\left(W, Q^{2}\right)$ by employing the values of $R=\sigma_{l} / \sigma_{t}$ from the parameterization A.N. Hiller Blin et al., Phys. Rev. C104, 025201 (2021).

