Hyperon Beams in Modern Baryon Spectroscopy

John Price California State University, Dominguez Hills HAW 2023 27 November 2023

Outline

• Motivation

- Feasibility
- Data Mining with CLAS
- Ap Elastic Scattering
 - Analysis details
 - Cross section calculation plans
- Physics with "tertiary" beams
- Conclusion

The Group

- JWP (PI)
- Current UG students
 - Jose Fabian Rodriguez ($pp \rightarrow pp$)
 - Matthew Kuljis ($\Lambda p \rightarrow \Lambda p$)
 - Anthony Scott $(K_{S}p \rightarrow K_{S}p)$
 - Athena Tran (simulations)
- Recent graduates
 - Dylan Nicholas (MS)
 - Gania Figueroa
 - Reina Morales
 - Noraim Nuñez (Λp poster at HYP18)

Introduction

CSUDH

- Why hyperon beams?
 - Different beam-target combinations look at the particles from a different "view"
 - Imagine the proton is a traffic sign

Introduction

CSUDH

- Why hyperon beams?
 - Different beam-target combinations look at the particles from a different "view"
 - Imagine the proton is a traffic sign
 - The wrong view can lead to very bad results
 - We don't know which beam particle will give us the view we need
 - We need to try everything we can

Motivation

- "Because it's there"
 - So many people told me it was impossible

Motivation

- "Because it's there"
 - So many people told me it was impossible
- Hyperon puzzle
- SU(3)_F symmetry

Channeling George Mallory

- We do this "because it's there"
- There's a value to "stunts"

- Push the boundary of what we can and can't do
- Even if there were no good reason to look
- Today's analysis "techniques" were yesterday's "tricks"
 - Tomorrow, it will be a background we'll have to suppress...

Hyperon Puzzle

 Ask the theorists/ astrophysicists for the "real" answer

Hyperon Puzzle

 Ask the theorists/ astrophysicists for the "real" answer

Hyperon Puzzle

- Ask the theorists/ astrophysicists for the "real" answer
- From the experimentalist's point of view, though...

Hyperon Puzzle

CSUD

- Ask the theorists/ astrophysicists for the "real" answer
- From the experimentalist's point of view, though...

 $pp \rightarrow pp$

Hyperon Puzzle

CSUD

- Ask the theorists/ astrophysicists for the "real" answer
- From the experimentalist's point of view, though...
- 13 measurements, ~1500 total events

Hyperon Puzzle

CSUD

- Ask the theorists/ astrophysicists for the "real" answer
- From the experimentalist's point of view, though...
- 13 measurements, ~1500 total events

SU(3)_F Symmetry

- $\sigma(\Lambda p \rightarrow \Lambda p)$ "should be" related to $\sigma(pp \rightarrow pp)$
- "Additive Quark Model" ca. 1965 (Levin & Frankfurt)

$$\sigma_{\Lambda p} = \frac{1}{2} \left(\sigma_{pp} + \sigma_{\Xi p} \right)$$

- We don't really have sufficient data to test
- Probably not "right"; just as probably not "wrong"
 Useful as a starting point, at least...

Event Topology

• Basic process:

CSUD

- $\gamma p \rightarrow K^+ \Lambda;$ $\Lambda p \rightarrow \Lambda p;$ $\Lambda \rightarrow \pi^- p$ Final state: K⁺π⁻pp
- Can reconstruct K^+
- Helps to reduce the background

Recent Results: $\Lambda p \rightarrow \Lambda p$

- Results from CLAS g12 run
- J. Rowley et al., PRL 127, 272303 (2021).
- Used K^+ to aid in detection of beam Λ

Inclusively-produced short-lived beams

- $\Lambda p \rightarrow \Lambda p; \Lambda \rightarrow \pi^{-}p$ is kinematically overdetermined
 - We don't "need" the initial $\gamma p \rightarrow K^+ \Lambda$ process
- Cross section determination is complicated
 - Beam normalization must be done in situ
 - Target thickness requires some work

Inclusively-produced short-lived beams

- $\Lambda p \rightarrow \Lambda p; \Lambda \rightarrow \pi^{-}p$ is kinematically overdetermined
 - We don't "need" the initial $\gamma p \rightarrow K^+ \Lambda$ process
- Cross section determination is complicated
 - Beam normalization must be done in situ
 - Target thickness requires some work
- Need to verify method using high-quality data
 - $\Lambda p \rightarrow \Lambda p$ data sample insufficient

Inclusively-produced short-lived beams

- $\Lambda p \rightarrow \Lambda p; \Lambda \rightarrow \pi^{-}p$ is kinematically overdetermined
 - We don't "need" the initial $\gamma p \rightarrow K^+ \Lambda$ process
- Cross section determination is complicated
 - Beam normalization must be done in situ
 - Target thickness requires some work
- Need to verify method using high-quality data
 - $\Lambda p \rightarrow \Lambda p$ data sample insufficient
 - use $pp \rightarrow pp$ instead

Luminosity Calculation

Start with generic cross
section equation $\sigma = \frac{N_e}{N_b N_t A \eta} = \frac{N_e}{\mathcal{L} A \eta}$ N_b usually provided by accelerator
Not valid for our "tertiary" beam
Electron -> Photon -> Proton N_t given by target length
Not valid for particles not traveling along beamline
...or particles that decay (but that's later...)

CSUDH

Calculating N_b

Plot proton angle vs. momentum Determine bins to get decent statistics in beam mass plot Produce same plot with single-proton events Events in each bin is N_h

Calculating N_t

CSUD

Based on the "effective" target length Primary beam particles see the whole target Our particles don't decay ℓ_d (for short-lived particles) escape out cylindrical wall ℓ_c escape out endcap ℓ_e

Calculating $\boldsymbol{\ell}_d$

CSUD

Mean path given by $\ell_d = \beta \gamma c \tau$ Faster-moving Λ s live longer in the lab frame Contribute to a higher luminosity Typically at smaller angles Here, assume target is infinite in extent

Calculating $\boldsymbol{\ell}_{c}$

CSUD

Mean path given by $\ell_c = r_{tgt} / \sin \theta_{\Lambda}$ In g11 run, few particles at "large" angles up to ~50° shortest path length is about 30% longer than target radius Here, assume particle does not decay, target is infinitely long

Calculating $\boldsymbol{\ell}_{e}$

(CSU)

Mean path given by

 $\ell_e = r_{tgt} / \cos \theta_{\Lambda}$

Happens when beam particle is produced near the end of the target

Here, assume particle does not decay, target has infinite radius (leads to lengths longer than target size)

Mean Beam Path Length

CSUP

Plot $min(\ell_d, \ell_c, \ell_e)$ Determine mean path length event by event Sum over all events to get total path length through target Use to calculate N_t

Λp Scattering Progress

Λp Scattering Progress

Rowley *et al.* (g12) (required K⁺)

This work (g11, inclusive beam)

Λp Scattering Progress

This work (*g*11, inclusive beam)

$K_{s}p$ Scattering Progress

 $\gamma p \rightarrow K^0 \Sigma^+;$ $K^0 p \rightarrow K^0_s p$ Final state: $\pi^+ \pi^- p p(\pi^0)$ Harder; need to subtract K^0_L contribution, many backgrounds Only 1 previous expt.

Other possibilities

This technique is not limited to Λ , K_s studies Any particle produced in sufficient quantities can (in principle) be used

Having a second proton in the event reduces the background considerably

Future work

Basically, "calculate the cross section"... Bin the events by p_{beam} and θ_{beam} Get N_b , N_t Simulate the acceptance

Currently underway for pp, Λp processes Still isolating signal for $K_{S}p$

Conclusion

We have observed $\Lambda p \to \Lambda p$ in two independent CLAS datasets

There are many more that we can look at...

We are making good progress at understanding the luminosity

We have observed a strong signal for $pp \to pp$ We are well on our way to demonstrating the feasibility of using secondary (tertiary) beams in CLAS

