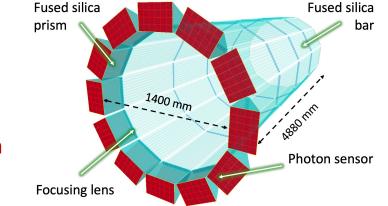

Development of a Novel Readout Concept for an EIC DIRC

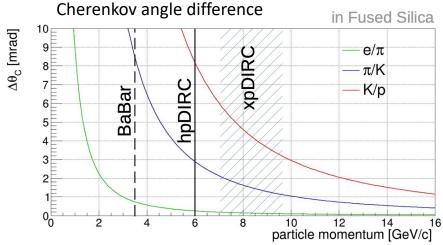
Generic R&D for EIC

K. Dehmelt, A. Deshpande, R. Dzhygadlo, T. K. Hemmick, Md. I. Hossain, C. Hyde, Y. Ilieva, G. Kalicy, P. Nadel-Turonski, C. Schwarz, J. Schwiening, N. Shankman, J. Stevens, N. Wickramaarachchi, C. Woody

-Mi-

HPDIRC CONCEPT


hpDIRC R&D programs

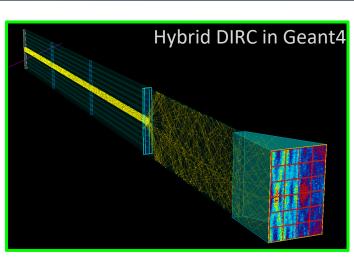

- Concept developed as part of previous Generic R&D program (eRD14)
- Validating components in CRT as part of Project R&D (eRD103)
- > Developing novel optical DIRC configurations (xpDIRC) in new Generic R&D program

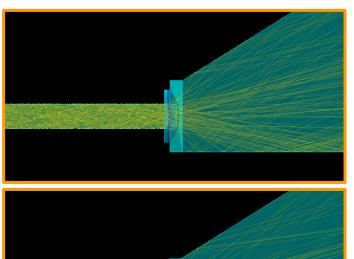
hpDIRC Concept:

- Fast focusing DIRC, utilizing high-resolution 3D (x,y,t) reconstruction
- > Design based on BaBar DIRC, R&D for SuperB FDIRC, PANDA Barrel DIRC
- Radiator/light guide: narrow fused silica bars (radius/length flexible)
- Innovative 3-layer spherical lenses
- Compact fused silica prisms as expansion volumes
- > Fast photon detection: small-pixel MCP-PMTs and high-density readout electronics
- > Detailed Geant4 simulation: ≥ 3 s.d. π/K separation at 6 GeV/c,

 \geq 3 s.d. e/ π separation at 1.2 GeV/c

OUTLINE


FY23


FY24

Objective: Explore innovate optical DIRC configurations to create

opportunities for material budget and cost reduction, improve performance

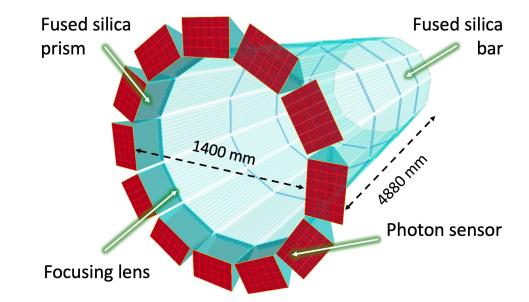
- Investigating theoretical limits of next-generation DIRC detector performance (done)
- Initial study of novel hybrid geometry (done, optimization in FY24)
 - Cost reduction
 - Performance improvement
 - Potential use of SiPM
- Thinner bars for low-mass DIRC (very preliminary study in FY23, continuation in FY24)
 - Reduce impact of DIRC material on EMCal
 - Improve DIRC e/ π performance at low momentum
- Deliverables and budget

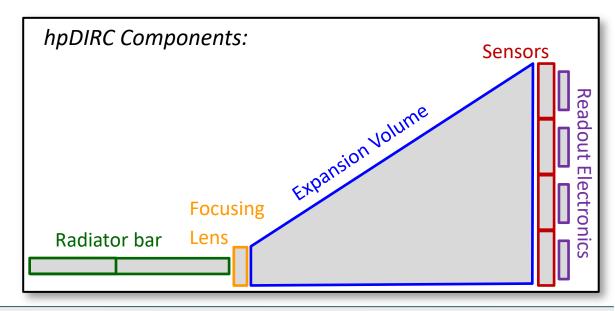
BASELINE HPDIRC DESIGN FOR EPIC

Radiator bars:

- Size: 4580mm x 35mm x 17mm (L x W x T)
- Barrel: 715mm radius, 12 bar boxes, 10 long bars per bar box long bar: 4 bars glued end-to-end, flat mirror on far end baseline design: reuse of BaBar DIRC bars (R&D started)
- Focusing optics:

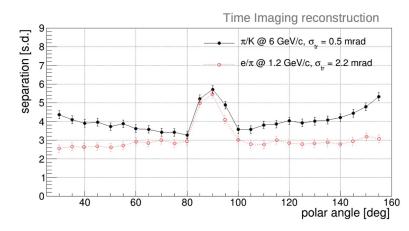
Radiation-hard 3-layer spherical lens (sapphire)

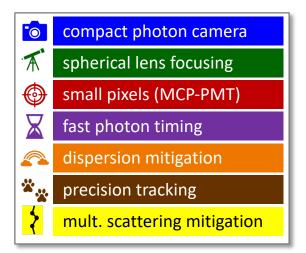

Expansion volume:


Solid fused silica prism: 240 x 360 x 300 mm³ (H x W x L)

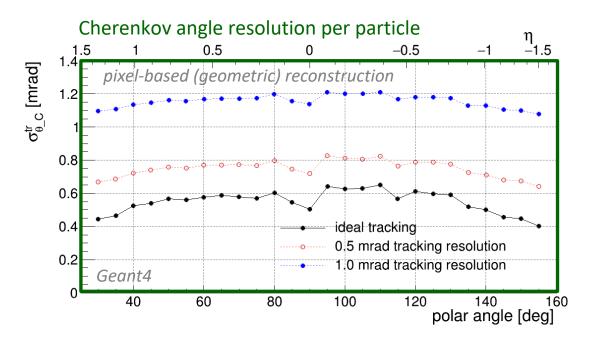
Readout system:

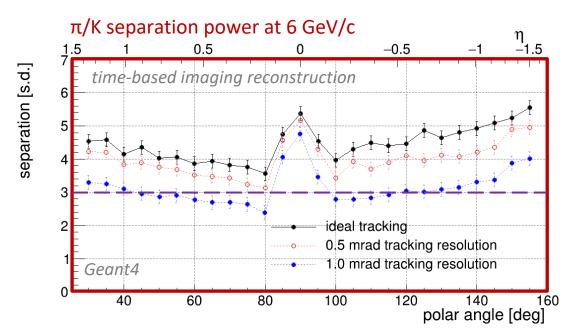
MCP-PMT Sensors (e.g. Photek/Photonis/Incom) ASIC-based Electronics (EICROC)


 Several core design aspects, as well as detailed Geant simulation, validated in PANDA Barrel DIRC beam tests (prototype tests in cosmic rays in preparation)



HPDIRC BEYOND EPIC


- hpDIRC baseline design performance matches requirements for ePIC
- Reuse of BaBar DIRC bars limited some ePIC hpDIRC optics design options
- Several aspects of design and components have potential for improvement
- Performance limits and novel optical designs are explored with Geant simulation in generic R&D program (EICGENRandD12).
- Selectively disable physics processes, evaluate performance
- Isolate impact of detailed performance parameter on separation power
- Started simulation study of fundamental DIRC performance limits due to
 - multiple scattering in bar
 - chromatic dispersion of photon angle and propagation time
 - optical aberrations from focusing system
 - > pixel size


HPDIRC PERFORMANCE VS. TRACKING

Impact of tracking angular resolution on hpDIRC performance

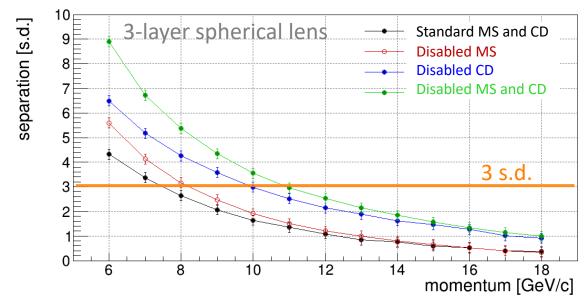
Note:

- > π/K Cherenkov angle difference at 6 GeV/c: $\Delta \Theta_c \approx 3$ mrad, at 10 GeV/c: $\Delta \Theta_c \approx 1$ mrad
- > Yellow Report tracking requirement: 0.5 mrad resolution at 6 GeV/c

Simulation studies performed with

- Stand-alone Geant4 simulation
- > Single particles from particle gun
- ➢ 6 GeV/c momentum
- > No magnetic field, no other ePIC subsystems

→ High-precision angular resolution crucial for reaching required hpDIRC performance


FY23 RESULTS: DIRC PERFORMANCE LIMITS

Main effects limiting future DIRC performance

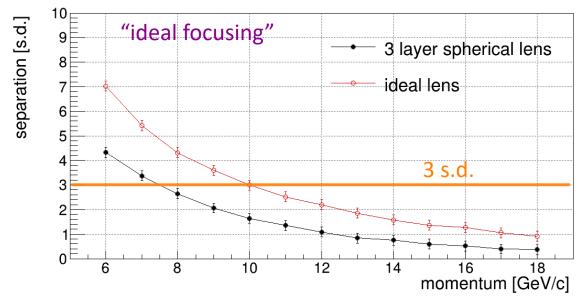
- ➤ Multiple scattering (MS) inside the bar
 dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- Optical aberrations from focusing system

 possible mitigation: hybrid optics, aspherical lenses
- Pixel size

→ possible mitigation: MCP-PMTs and SiPM with small pixels (~1.5mm) commercially available, very active field

Simulation studies performed with

- Stand-alone Geant4 simulation
- > Single particles from particle gun
- > 30° polar angle
- > No magnetic field, no other ePIC subsystems

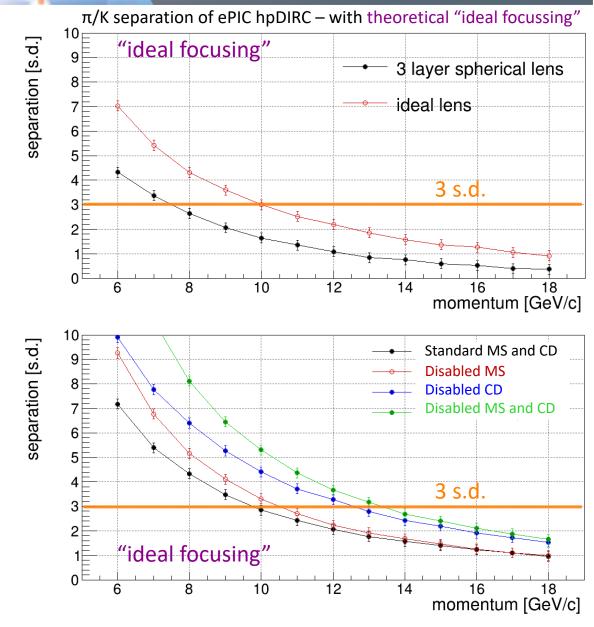

 π/K separation of ePIC hpDIRC – impact of physics processes

FY23 RESULTS: IN/K SEPARATION OF EPIC HPDIRC - FOCUSING

Main effects limiting future DIRC performance

- ➤ Multiple scattering (MS) inside the bar
 dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- Optical aberrations from focusing system
 possible mitigation: hybrid optics, aspherical lenses
- Pixel size

→ possible mitigation: MCP-PMTs and SiPM with small pixels (~1.5mm) commercially available, very active field


 π/K separation of ePIC hpDIRC – with theoretical "ideal focussing"

FY23 RESULTS: IN/K SEPARATION OF EPIC HPDIRC - FOCUSING

Main effects limiting future DIRC performance

- ➤ Multiple scattering (MS) inside the bar
 dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- ➢ Optical aberrations from focusing system
 → possible mitigation: hybrid optics, aspherical lenses
- Pixel size

→ possible mitigation: MCP-PMTs and SiPM with small pixels (~1.5mm) commercially available, very active field

FY23 RESULTS: DIRC PERFORMANCE LIMITS

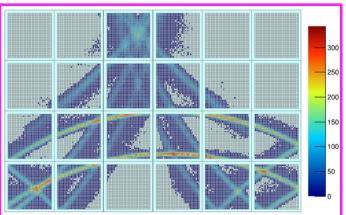
Main effects limiting future DIRC performance

- ➤ Multiple scattering (MS) inside the bar
 dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- Chromatic dispersion (CD) of angle and time

dominates at higher momentum


 \rightarrow possible mitigation: limit spectral acceptance

Optical aberrations from focusing system


 \rightarrow possible mitigation: hybrid optics, aspherical lenses

Pixel size

 \rightarrow possible mitigation: MCP-PMTs and SiPM with small pixels (~1.5mm) commercially available, very active field

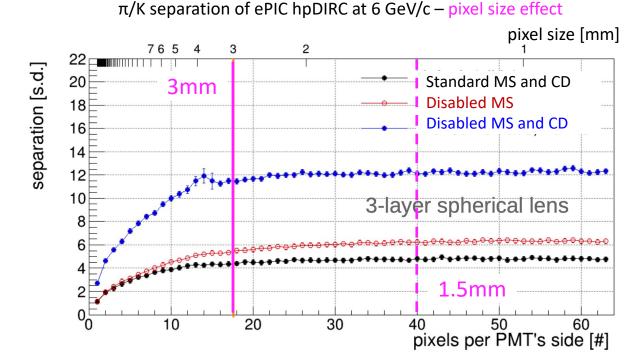
32x32 pixels (1.6 mm) per 2" MCP-PMT

FY23 RESULTS: DIRC PERFORMANCE LIMITS

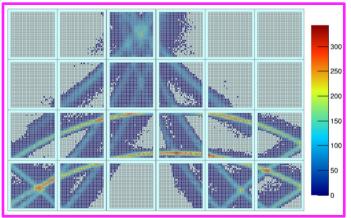
Main effects limiting future DIRC performance

- ➤ Multiple scattering (MS) inside the bar
 dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- Chromatic dispersion (CD) of angle and time dominates at higher momentum

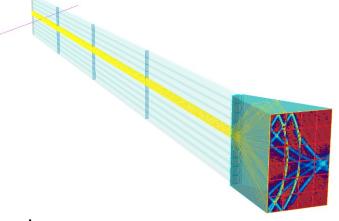
 \rightarrow possible mitigation: limit spectral acceptance

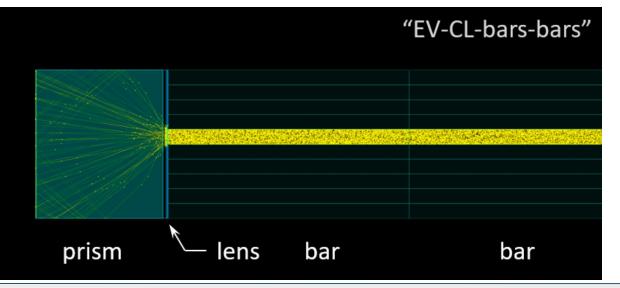

Optical aberrations from focusing system

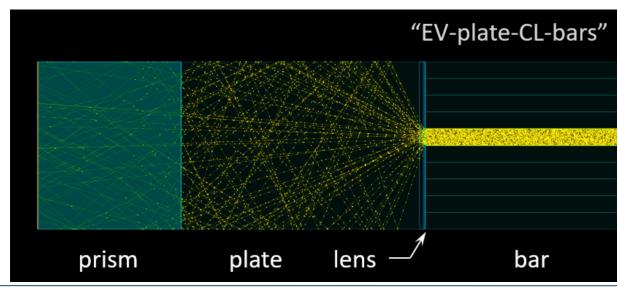
 \rightarrow possible mitigation: hybrid optics, aspherical lenses

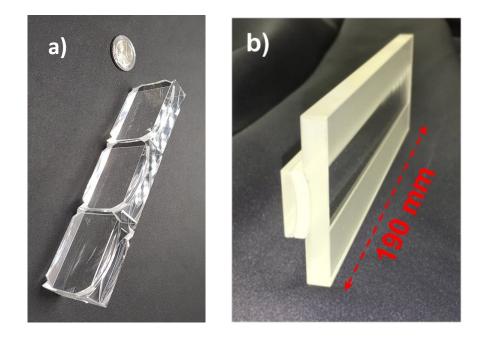

Pixel size

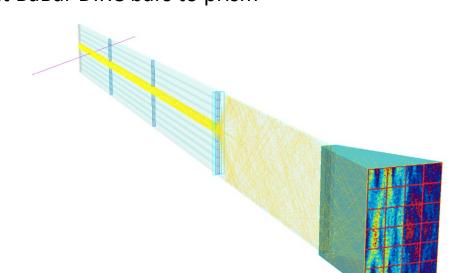
 \rightarrow possible mitigation: MCP-PMTs and SiPM with small pixels (~1.5mm) commercially available, very active field


→ Optical aberrations, multiple scattering, pixel size are promising areas;
 start with hybrid optics, initial exploration of thin bar and small-pixel sensors.

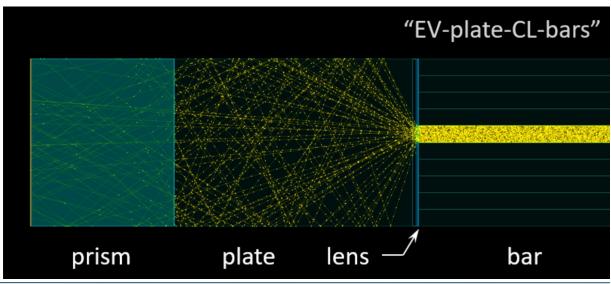

32x32 pixels (1.6 mm) per 2" MCP-PMT


- > ePIC detector barrel length requires additional "light guide" section to connect BaBar DIRC bars to prism
- > Alternative to baseline (narrow bars) is one single short wide plate

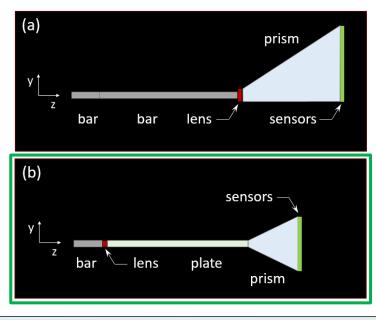

Only narrow bars in each sector

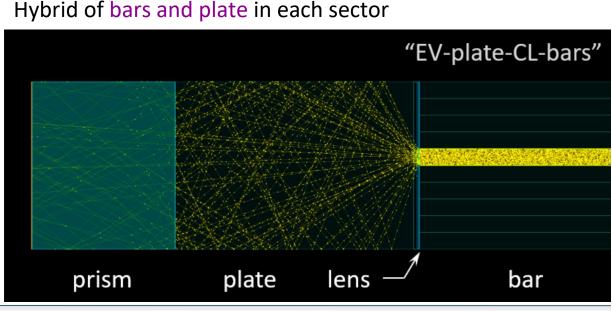


Hybrid of bars and plate in each sector

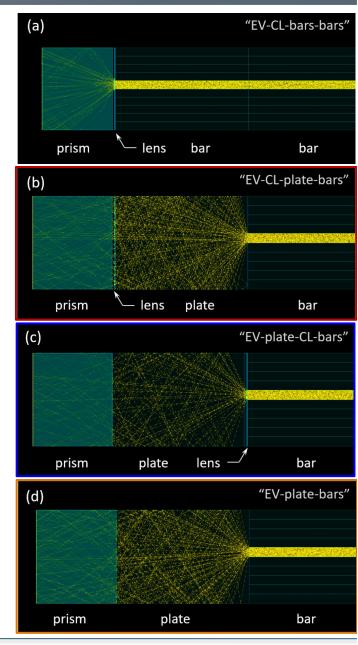


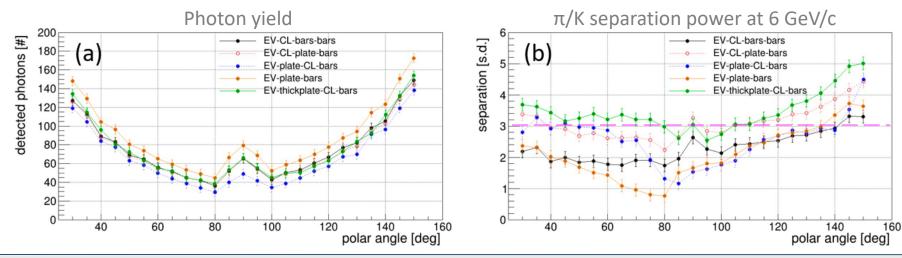
- > ePIC detector barrel length requires additional "light guide" section to connect BaBar DIRC bars to prism
- > Alternative to baseline (narrow bars) is one single short wide plate
- Hybrid optics (narrow bars in active area, wide plates as light guides) could mitigate focusing errors and reduce cost
- Expansion volume effectively starts at end of narrow bar,
 improving angular resolution, possible use of cylindrical lens

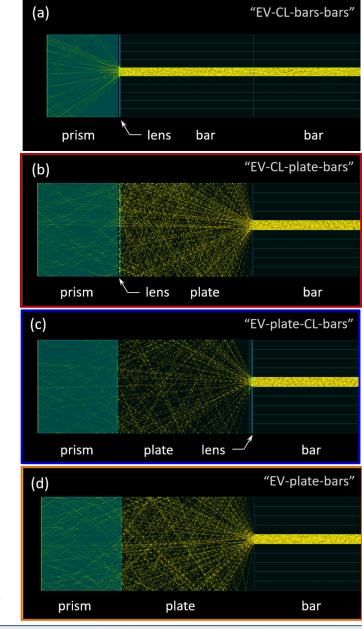




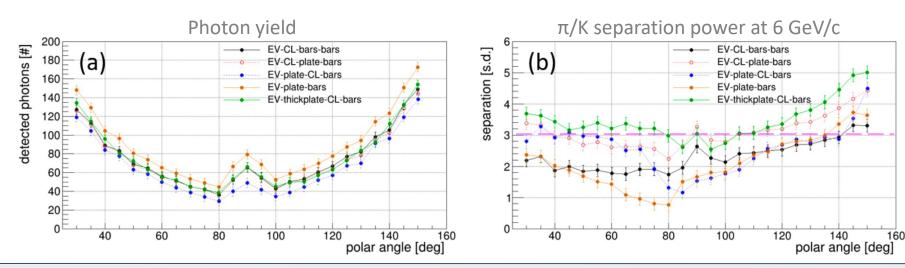
Hybrid of bars and plate in each sector

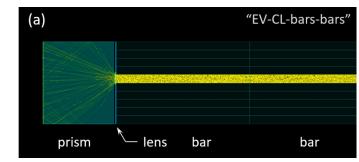

- > ePIC detector barrel length requires additional "light guide" section to connect BaBar DIRC bars to prism
- > Alternative to baseline (narrow bars) is one single short wide plate
- Hybrid optics (narrow bars in active area, wide plates as light guides)
 could mitigate focusing errors and reduce cost
- Expansion volume effectively starts at end of narrow bar,
 improving angular resolution, possible use of cylindrical lens
- Longer expansion in plate in plate could make shorter prism possible, with smaller sensor area, possibly enabling use of SiPM

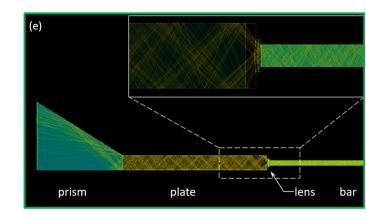



G.Kalicy, CUA | xpDIRC for EIC | Generic EIC R&D Meeting | October 31, 2023

- (a) hpDIRC design with narrow bars used for both the active area and the light guide section, and cylindrical lens (CL) placed between the bars and the prism (EV)
- (b) conservative xpDIRC hybrid design with narrow bars coupled to a wide plate as light guide via a cylindrical lens
- (c) novel xpDIRC hybrid design with the cylindrical lens placed between the narrow bars and the wide plate
- (d) simplified design without focusing, with narrow bars coupled to the wide plate

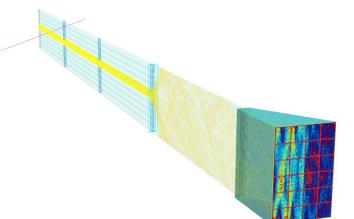

- (a) hpDIRC design with narrow bars used for both the active area and the light guide section, and cylindrical lens (CL) placed between the bars and the prism (EV)
- (b) conservative xpDIRC hybrid design with narrow bars coupled to a wide plate as light guide via a cylindrical lens
- (c) novel xpDIRC hybrid design with the cylindrical lens placed between the narrow bars and the wide plate
- (d) simplified design without focusing, with narrow bars coupled to the wide plate





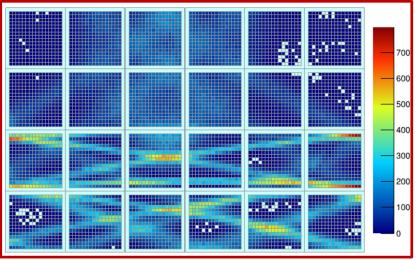
section, and cylindrical lens (CL) placed between the bars and the prism (EV)

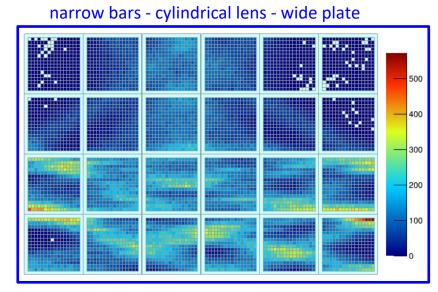
- (b) conservative xpDIRC hybrid design with narrow bars coupled to a wide plate as light guide via a cylindrical lens
- (c) novel xpDIRC hybrid design with the cylindrical lens placed between the narrow bars and the wide plate
- (d) simplified design without focusing, with narrow bars coupled to the wide plate
- (e) xpDIRC "thick plate" hybrid design with cylindrical lens placed between the narrow bars and 50 mm-thick* wide plate \rightarrow best performance, warrants further studies

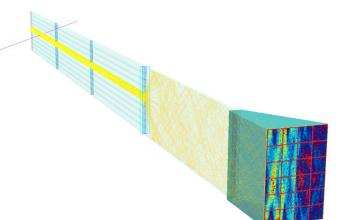


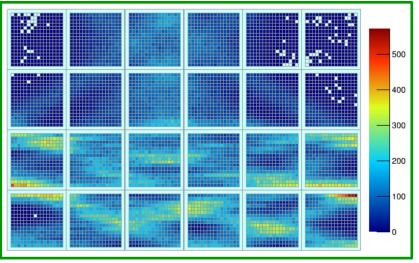
(*50 mm-thickness *ad hoc* choice based on current lens and prism, can be reduced, to be studied)

G.Kalicy, CUA | xpDIRC for EIC | Generic EIC R&D Meeting | October 31, 2023


FY23 CONCLUSIONS AND OUTLOOK


- Configuration where the cylindrical lens is positioned between the wide plate and the expansion volume comes close to achieving the desired 3 s.d. separation power at 6 GeV/c
- Alternative cylindrical lens positions require additional optimization to determine if their performance can be enhanced
- Configuration with thicker plate to mitigate photon loss has a lot of potential, especially with thinner radiator bar option
- Combination of optimized spherical lenses with wide plate will be investigated

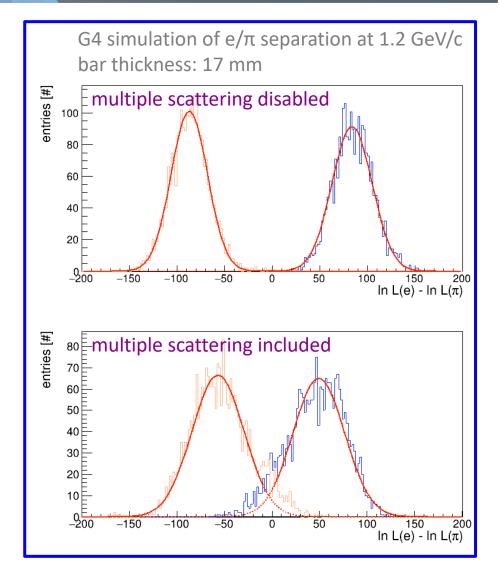




FY23 CONCLUSIONS AND OUTLOOK

- Configuration where the cylindrical lens is positioned between the wide plate and the expansion volume comes close to achieving the desired 3 s.d. separation power at 6 GeV/c
- Alternative cylindrical lens positions require additional optimization to determine if their performance can be enhanced
- Configuration with thicker plate to mitigate photon loss has a lot of potential, especially with thinner radiator bar option
- Combination of optimized spherical lenses with wide plate will be investigated

narrow bars - spherical lenses - wide plate

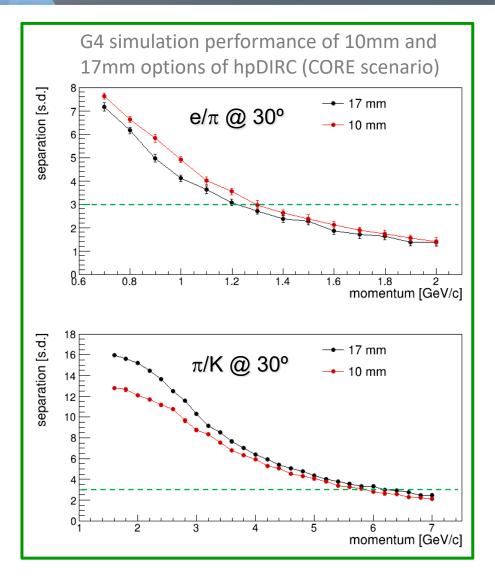

PRE-FY24 STUDIES: LOW-MASS THIN XPDIRC

Key advantages of low-mass thin xpDIRC (10mm example):

- > 41% reduction in mass benefits the EMCal performance
- Multiple scattering in the DIRC bar limiting factor for
 hpDIRC performance at lower momentum and at high momentum
- Potential for significant e/π ID improvement around 1 GeV/c,
 without significantly affecting π/K ID above 4 GeV/c
- Smaller bar thickness simplifies focusing lens design/performance

Challenges:

- Lower photon yield
- More complicated fabrication but production of large
 10 mm-thin fused silica radiator bars/plate by industry feasible
 (1250 x 660 x 10 mm³ prototype plate produced by Nikon for LHCb TORCH DIRC)


PRE-FY24 STUDIES: LOW-MASS THIN XPDIRC

Key advantages of low-mass thin xpDIRC (10mm example):

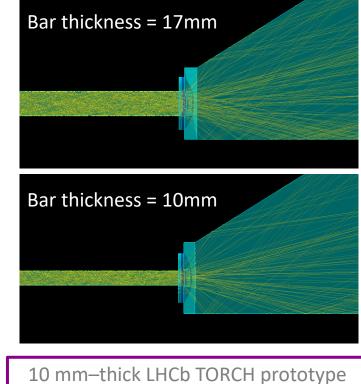
- > 41% reduction in mass benefits the EMCal performance
- Multiple scattering in the DIRC bar limiting factor for hpDIRC performance at lower momentum and at high momentum
- Potential for significant e/π ID improvement around 1 GeV/c,
 without significantly affecting π/K ID above 4 GeV/c
- Smaller bar thickness simplifies focusing lens design/performance

Challenges:

- Lower photon yield
- More complicated fabrication but production of large
 10 mm-thin fused silica radiator bars/plate by industry feasible
 (1250 x 660 x 10 mm³ prototype plate produced by Nikon for LHCb TORCH DIRC

PRE-FY24 STUDIES: LOW-MASS THIN XPDIRC

Key advantages of low-mass thin xpDIRC (10mm example):

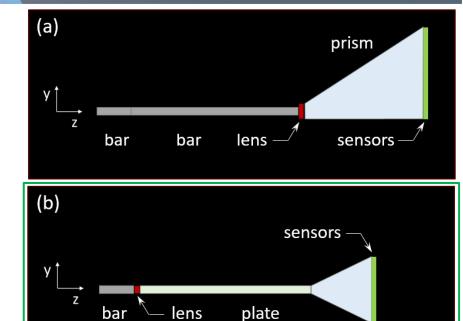

- > 41% reduction in mass benefits the EMCal performance
- Multiple scattering in the DIRC bar limiting factor for
 hpDIRC performance at lower momentum and at high momentum
- Potential for significant e/π ID improvement around 1 GeV/c,
 without significantly affecting π/K ID above 4 GeV/c
- Smaller bar thickness simplifies focusing lens design/performance

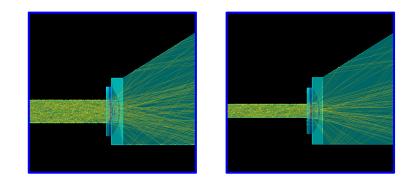
Challenges:

- Lower photon yield
- > More complicated fabrication but production of large

10 mm-thin fused silica radiator bars/plate by industry feasible

(1250 x 660 x 10 mm³ prototype plate produced by Nikon for LHCb TORCH DIRC




Activity focus:

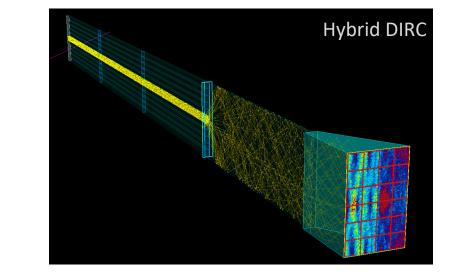
- > Hybrid optics (mitigate focusing errors and reduce cost)
 - Study of plate configuration with spherical lenses
 - > Optimize lens properties for longer expansion in plate
 - Study shorter prism, two half-width prisms, possibly with SiPM readout (cost reduction, reduce sensor area of prism by factor 3-4)
 - > Optimize "Thick plate" hybrid design (avoids photon loss in the lens)
- > Thinner bars (mitigate multiple scattering effects in DIRC bars)
 - Study potential combination with "Thick plate" hybrid design

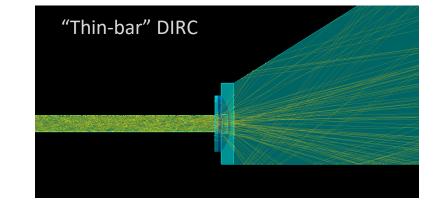
Deliverables:

- Evaluation of the DIRC performance with
 - thinner bars, including the xpDIRC hybrid optics option with spherical lenses
 - xpDIRC geometry with a small and/or narrow expansion volume
 - SiPM readout based on current state-of- the-art sensors

prism

XPDIRC R&D ACTIVITIES


- Evaluation of the performance of the hpDIRC/xpDIRC hybrid geometry
 - Narrow bars with wide plate, impact on light-guide section decision for Detector-1
 - Narrow bars with wide plate and new focusing optics, impact on design of xpDIRC for Detector-2
- Complete studies of the xpDIRC geometry


FY 23

FY 24

25

- Evaluation of the DIRC performance with thinner bars
- Evaluation of the performance of the xpDIRC geometry with a small and/or narrow expansion volume, with MCP-PMT/SiPM readout
- Requirements of SiPM performance parameters (dark noise and afterpulsing) for xpDIRC with SiPM readout
- Experimental validation of xpDIRC geometry aspects (eRD103 synergy) using available lenses/prisms (or procuring new components)

FY24 BUDGET REQUEST

2024 Requests:

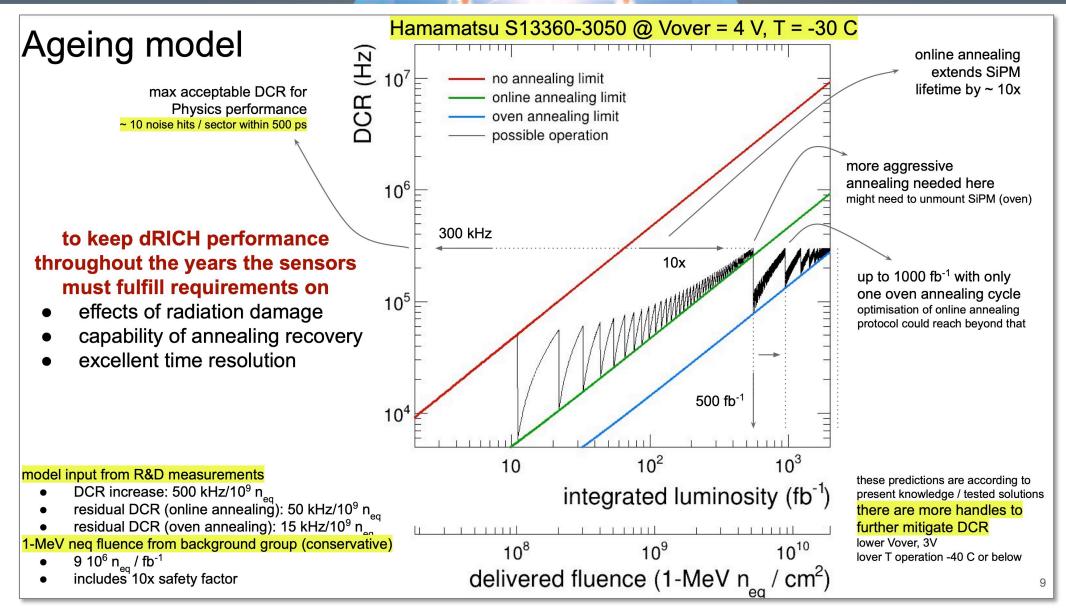
- > Top priorities:
 - Continue support for CUA graduate student Md. Imran Hossain
 - Provide travel support for collaborative in-person meetings
- Strengthen team, accelerate progress by adding support for new 50% CUA PostDoc (fallback option: add support for new CUA undergraduate student)

	100%	80%	60%
Graduate student, CUA, 100%	50k	\$50k	\$50k
Postdoc, CUA, 50%	\$60k	0	0
Undergraduate student, CUA, 100%	0	\$15k	0k
Travel, CUA/GSI	\$15k	\$15k	\$15k
Total	\$125k	\$80k	\$65k

COMMITTEE QUESTION

For the size of focal plane you envision, can you show from a simple calculation that SiPMs are actually a realistic option? *(For noise levels, assume new SiPMs and a realistic low temperature.)*

Sensor area of current ePIC hpDIRC prism 85750 mm², ~9000 pixels (3 mm x 3 mm)

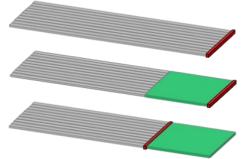

- > Simplest scenario: no cooling, no annealing, initial SiPM Dark Count Rate (DCR) 100 kHz/mm² at room temperature
 - At start of experiment: total raw DCR hit rate 110 GHz, 900 DCR hits per prism in 100 ns time window used in DIRC reco (compared to 30-200 signal hits) [Impact of cooling: approx. factor 2 DCR reduction per 10° C]
 - > At 10⁹ 1-MeV n_{eq}/cm²: 10 000 DCR hits/prism in 100 ns time window
- > More advanced "dRICH" scenario (HPK S13360-3050, cooling to -30° C plus annealing, keeping DCR below 100 kHz/pixel)
 - > 10 DCR hits/prism in 100 ns window at start of experiment, up to 100 hits/prism at 10⁹ 1-MeV n_{eq}/cm²

DIRC PID performance may be OK in dRICH scenario (beam test with laser pulser added: ~10% separation power loss for 50 extra hits)

However, implementation of cooling to -30° C and annealing for DIRC not trivial, possible impact on fused silica optics

Proposed EICGen studies: shorter prism and/or split prism → could reduce sensor area per prism by up to factor 4, possibly reduce cooling requirements (-10° C enough?) or remove need for annealing

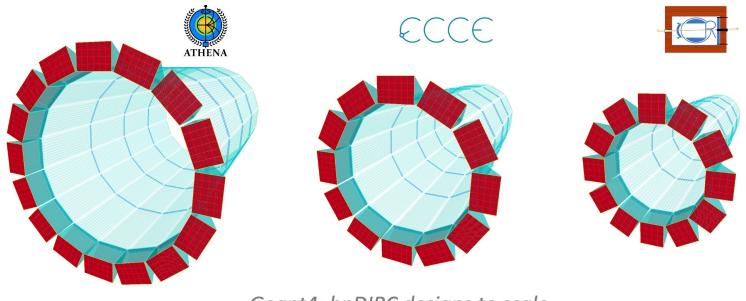
COMMITTEE QUESTION

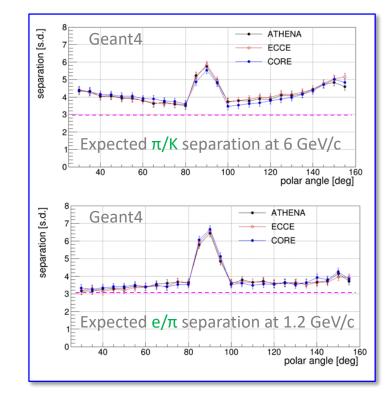


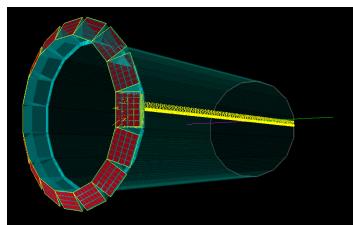
Thanks to Marco Contalbrigo et al., ePIC dRICH studies

SUMMARY AND OUTLOOK

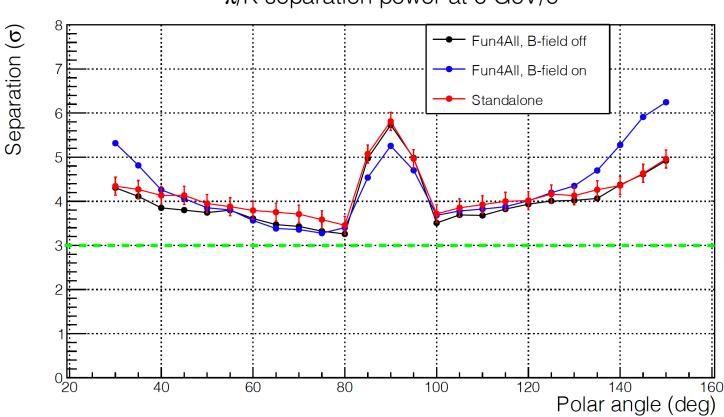
- Performance of hpDIRC baseline design good match to ePIC PID requirements but planned reuse of BaBar DIRC bars limits ePIC hpDIRC design options
- Generic DIRC R&D explores innovative optical DIRC configurations
 to create opportunities for cost reduction, performance improvement, and complementarity
- Narrow bar/wide plate hybrid could reduce cost of light guides and improve the performance
- Novel hybrid lens configurations (xpDIRC) may enable designs with more compact prisms, reducing the material budget, potentially making SiPM a viable option for the xpDIRC
- > Thinner bars reduce the DIRC material budget, lowering the impact on the EMCal; reduction of multiple scattering inside the bar could improve the DIRC e/π separation



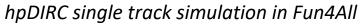

Extra Material

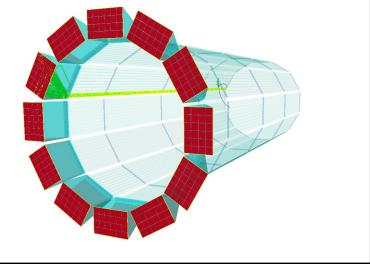

FLEXIBILITY OF HPDIRC DESIGN

- hpDIRC PID performance largely independent of number of sectors, barrel radius, and bar length – design can be optimized for integration
- Expansion volume shape can be optimized for MCP-PMT magnetic field performance (tilted sensor plane)

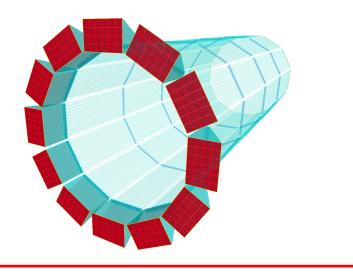


HPDIRC SIMULATED PERFORMANCE




 π/K separation power at 6 GeV/c

Comparison of hpDIRC performance in standalone G4 simulation and Fun4All


Small differences result of different physics lists

(hadronic processes absent in our standalone G4)

hpDIRC geometry in standalone Geant4

HPDIRC COMPONENTS: 3-LAYER LENS

Technical risk: hpDIRC PID design validation

Radiation hardness and focusing performance of 3-layer lens

Conventional plano-convex lens with air gap limits DIRC performance


- Significant photon yield loss for particle polar angles around 90°, gap in DIRC PID
- Distortion of image plane, PID performance deterioration

Key element of hpDIRC design:

➤ 3-layer compound lens (without air gap):

layer of high-refractive index material (focusing/defocusing) sandwiched between two layers of fused silica

- Creates flat focal plane matched to fused silica prism shape
- Avoids photon loss and barrel PID gap
- Successfully produced prototype lenses and validated performance in PANDA Barrel DIRC prototype with particle beams at CERN and GSI

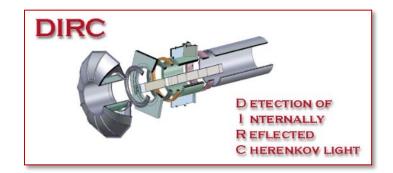
DIRC RESOLUTION

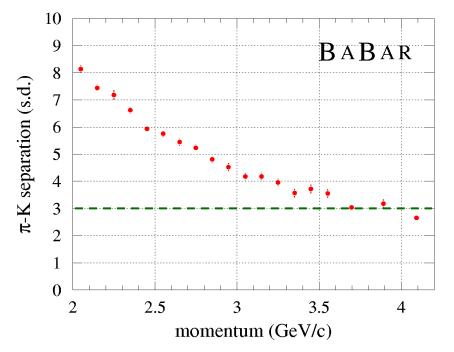
$$\sigma_{\theta_{c}}^{2}(particle) = \left. \frac{\sigma_{\theta_{c}}^{2}(photon)}{N_{\gamma}} + \sigma_{correlated}^{2} \right.$$

 $\sigma_{\theta_c}(particle)$

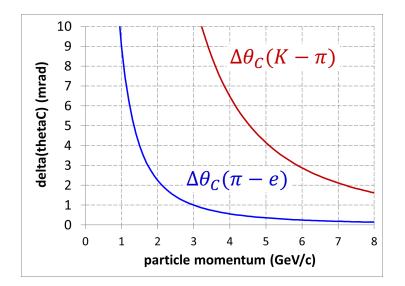
Cherenkov angle resolution per particle

 $\sigma_{\theta_c}(photon)$ Cherenkov angle resolution per photon (bar size, pixel size, chromatic, bar imperfections)


N_γ Number of detected photons per particle (bar size, bar imperfections, Photon Detection Efficiency)


σcorrelated Contribution from external sources (tracking, multiple scattering, etc.)

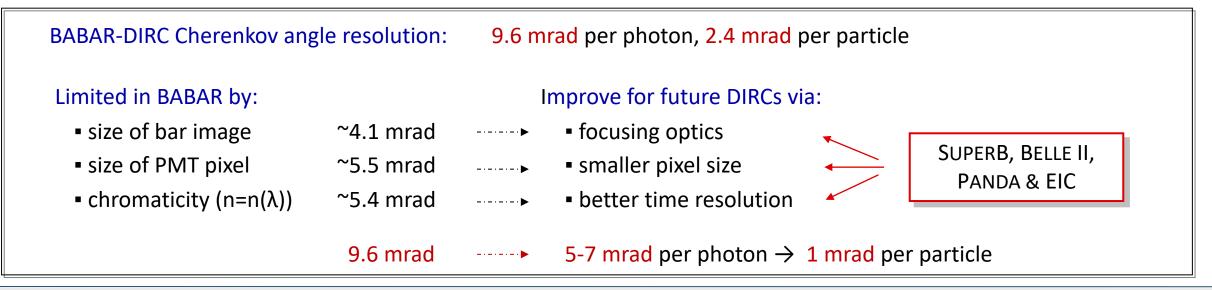
BaBar DIRC achieved 2. 4 mrad θ_c resolution at 3-4 GeV/c,


3 s.d. π/K separation at 4 GeV/c

How can we push this performance to higher momentum?

IMPROVING ON THE BABAR DIRC

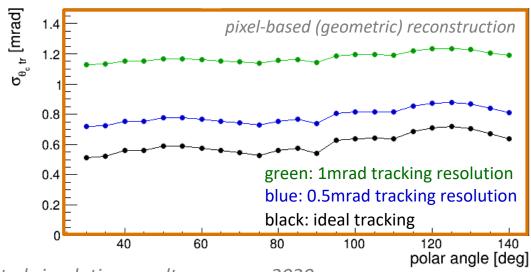
PID performance largely driven by track Cherenkov angle (θ_c) resolution. Required resolution defined by refractive index of radiator.

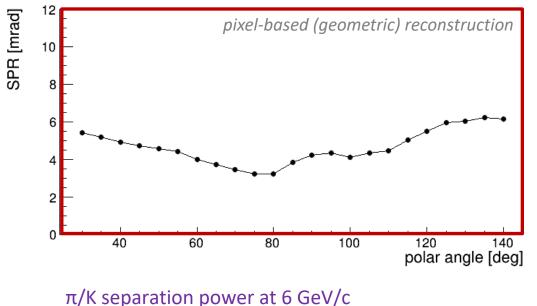

Example: π/K separation in synthetic fused silica <n> \approx 1.473

 \rightarrow 2.9 mrad π/K difference in θ_c at 6 GeV/c;

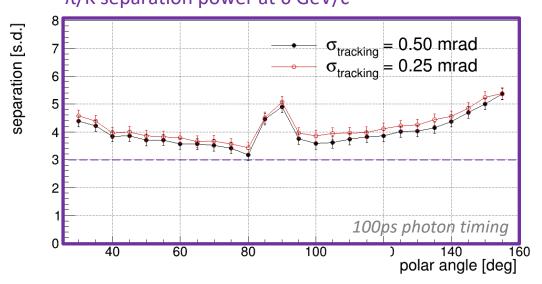
 \rightarrow need ~1 mrad resolution per particle for 3 s.d. separation.

Approach:


Smaller track angular error (better tracking detector) Higher photon yield (modern sensors with better PDE) Improve Cherenkov angle resolution per photon


G.Kalicy, CUA | xpDIRC for EIC | Generic EIC R&D Meeting | October 31, 2023

HPDIRC PERFORMANCE IN GEANT4


Photon yield per particle 140 multiplicity [#] pixel-based (geometric) reconstruction 120 100 80 60 40 20 100 120 40 60 80 140 polar angle [deg] Cherenkov angle resolution angle per particle

updated simulation results, summer 2020

Cherenkov angle resolution per photon (SPR)

