EICGENR&D2023_09 Z-Tagging Mini-DIRC

CHARLES HYDE

Z-Tagging MiniDIRC

C.E. Hyde^{*†3}, Wenliang Li^{*1,2}, V. Baturin³, Jan Bernauer^{1,2}, Ross Corliss^{1,2}, Ethan Cline^{1,2,8}, Jaydeep Datta^{1,2}, Abhay Deshpande^{1,2}, Roman Dzhygadlo⁵, Thomas K. Hemmick^{1,2}, Yordanka Ilieva⁶, Grzegorz Kalicy⁴, Brynna Moran^{1,2}, Charles-Joseph Naim^{1,2}, Nathan Shankman^{1,2}, Evgeny Shulga^{1,2}, Pawel Nadel-Turonski^{1,2}, Barak Schmookler⁷, Jochen Schwiening⁵, Carsten Schwarz⁵, and Nilanga Wickramaarachchi⁴

¹Stony Brook University, Stony Brook, NY 11794, USA
²Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, NY 11794, USA
³Old Dominion University, Norfolk VA 23529, USA
⁴Catholic University of America, Washington D.C. 20064, USA
⁵GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
⁶University of South Carolina, Columbia, South Carolina 29208, USA
⁷University of California Riverside, Riverside, CA 92521, USA
⁸Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Z-Tagging Mini-DIRC R&D

- Proposed IR-8 beamline for a second EIC detector includes a highdispersion focus in the downstream ion beamline 45 m from the IP.
 - This enables detection/tracking of ions with magnetic rigidity deviating as little as ±1% from beam rigidity. This is an order of magnitude greater acceptance than the IR-6 beamline.
- This is an R&D project to prove the principle that a high precision Cherenkov detector could identify the charge of any ion from proton to uranium detected by the tracking detectors at the 2nd focus.

Questions from Committee: I.

- Physics case: The proposed detector measures the Z of a fragment.
 - 1. How do we get the mass?
 - A. Second Focus tracker measures rigidity P/Z
 - B. All forward fragments have ≈ Beam velocity
 - C. Rigidity \otimes Z \rightarrow Isotope unique ID
 - 2. How do we get spectroscopy? Does that require a high-resolution calorimeter? Photo decays are boosted into a high-resolution pre-shower EMCal foreseen as part of ZDC.
 - 3. Is the physics case strong enough if it was just to establish coherent scattering for some reactions?
 - A. The Z-tagger is essential to realize the full physics potential of the 2nd focus and its trackers.
 - B. Physics impact of Z-tagger for both Coherent and Incoherent scattering is discussed below

Questions from Committee: II.

- II. The proposal is simulation.
 - How are they validated? GSI photon collection MC code has been validated by Beam-Tests of PANDA DIRC prototypes.
 - What is new or special in this proposal concerning DIRC technology? Z-tagging requires uniform light collection at the 1% level over the 10-15 cm range of fragment impact points
 - 3. What has been approximated in the current simulation?
 - A. Surface roughness is parameterized
 - B. Key elements for this R&D project:
 - i. Uniformity of light collection over the range of impact points
 - ii. Non-uniformity of photo-sensor QE and gain
 - 4. What is the preferred photon sensor solution, taking radiation hardness and external magnetic field into account?
 - A. MCP-PMT or conventional PMT. Detector is ≥1m from accelerator magnet, fringe fields should be ~gauss.

Questions from Committee: III.

- III. Which alternative technologies (Si-telescope?) have been considered? A dE/dX-based detector would have the same Z² sensitivity, but Landau-Vavilov fluctuations preclude achieving the desired resolution. There will be a Si-tracker (probably AC-LGAD) in the Roman Pot detectors at the second focus.
- IV. Will the detector benefit from higher granularity? The fragments will be focused to a very narrow vertical band. The tracker will identify the location of the hit or hits. Granularity may be more a complication than advantage.
- V. What will a reduced Year 1 program achieve compared to the proposal text? Budget discussion at end.

 $\frac{\text{R-8 Layout}}{\text{Second Focus}}$ $D_x = \text{Dispersion} = 0.48 \text{ m/100\%}$ $1-x_L = \pm \text{Beam-Stay-Clear} \le 1\%$

Parameters at the 2 nd	^l focus for	different	energies
-----------------------------------	------------------------	-----------	----------

	Value at			
Parameter	41 GeV	100 GeV	275 GeV	Units
β_x	0.85	0.8	0.5	m
D_x	0.48	0.48	0.47	m
ϵ_{χ}	44	30	11.3	nm
σ_{δ} (10 ⁻⁴)	10.3	9.7	6.8	-
$1 - x_L (10^{-3})$	4.16	10.2	7	-

C. Hyde

EICGENR&D2023_09

Isotope Tagging

- Evaporation residues
 - All fragments at beam velocity. Grey zones are Beam-Stay-Clear exclusion zones

Coherent & Incoherent Scattering

- Veto Breakup to tag Coherent Scattering
- Tag the specific incoherent channel, 1n, 1p, 2n, 1p1n, ...
 - Deformation has been measured in many ground-state and excited-state rotational bands
 - Nuclear deformation in incoherent scattering can depend upon the final channel: A-1 A-2, ...
 - Figure from H.Mantysaari, et al, PRL 131, 062301 (2023)

Initial Simulation Results

- Simulation of 10% of Cherenkov yield, rescaled to full yield
- Geometry copied from EIC DIRC studies, not yet optimized for mini-DIRC

Year-1 Simulation Deliverables, Full Funding

- Variations in light collection for different impact coordinate [x, horiz.] of the incident ion
- Pulse height dependence on variations of light illumination of the photo-sensor surface.
 - Based on typical efficiency and gain variations across the surface of existing SiPM and MCP-PMT photosensors. Include saturation effects of SiPM.
- Include upstream Si tracker to generate fluctuations in light yield from energetic δ-rays
- Photo sensor dynamic range and gain saturation simulation studies.
 - From protons to U, we anticipate a dynamic range of 1 : 10⁴ in Cherenkov light yield.
 - Design concept for fiber optic array splitting light collection to two sensors, one high-gain, one low-gain.
- Backgrounds from eA physics collisions at the IP and re-scattered particles.
 - Compare primary eA processes from FLUKA with the fragmentation models. Compare charge tracks generated by re-scattering/showering in beamline elements.

Year-1 Simulation Deliverables, 80% Funding

- Variations in light collection for different impact coordinate [x, horiz.] of the incident ion
- Pulse height dependence on variations of light illumination of the photo-sensor surface.
 - Based on typical efficiency and gain variations across the surface of existing SiPM and MCP-PMT photosensors. Include saturation effects of SiPM.
- Include upstream Si tracker to generate fluctuations in light yield from energetic δ-rays
- Photo sensor dynamic range and gain saturation simulation studies.
 - From protons to U, we anticipate a dynamic range of 1 : 10⁴ in Cherenkov light yield.
 - Design concept for fiber optic array splitting light collection to two sensors, one high-gain, one low-gain.
- Backgrounds from eA physics collisions at the IP and re-scattered particles.
 - Compare primary eA processes from FLUKA with the fragmentation models. Compare charge tracks generated by re-scattering/showering in beamline elements.

Year-1 Simulation Deliverables, 60% Funding

Variations in light collection for different impact coordinate [x, horiz.] of the incident ion

Pulse height dependence on variations of light illumination of the photo-sensor surface.

Based on typical efficiency and gain variations across the surface of existing SiPM and MCP-PMT photosensors. Include saturation effects of SiPM.

Include upstream Si tracker to generate fluctuations in light yield from energetic δ-rays

Photo sensor dynamic range and gain saturation simulation studies.

From protons to U, we anticipate a dynamic range of 1 : 10⁴ in Cherenkov light yield.

Design concept for fiber optic array splitting light collection to two sensors, one high-gain, one low-gain.

Backgrounds from eA physics collisions at the IP and re-scattered particles.

Compare primary eA processes from FLUKA with the fragmentation models. Compare charge tracks generated by re-scattering/showering in beamline elements.

Budget(s)

-

Table 2: Budget Detail:	ODU (Full	Funding)	
Description	Salary	Fringe	Subtotal
PostDoc $(50\% \text{ FTE})$	\$31,000	\$16,000	\$47,000
Graduate Student $(100\% \text{ FTE})$	30,000	2,235	\$32,235
Foreign Travel			\$ 4,000
Domestic Travel			2,117
Subtotal (Items 1–4)			\$85,352
IDC: 26% of Item 4 (Off-Campus rate)			\$22,192
Tuition (IDC exempt)			9,456
Total (Items 5,6,7)			\$117,000
	Table 2: Budget Detail:DescriptionPostDoc (50% FTE)Graduate Student (100% FTE)Foreign TravelDomestic TravelSubtotal (Items 1–4)IDC: 26% of Item 4 (Off-Campus rate)Tuition (IDC exempt)Total (Items 5,6,7)	Table 2: Budget Detail: ODU (FullDescriptionSalaryPostDoc (50% FTE)\$31,000Graduate Student (100% FTE)\$30,000Foreign Travel\$30,000Domestic Travel\$30,000Subtotal (Items 1–4)\$10C: 26% of Item 4 (Off-Campus rate)Tuition (IDC exempt)\$1000Total (Items 5,6,7)\$1000	Table 2: Budget Detail: ODU (Full Funding)DescriptionSalaryFringePostDoc (50% FTE)\$31,000\$16,000Graduate Student (100% FTE)\$30,000\$2,235Foreign TravelSubtotal (Items 1–4)IDC: 26% of Item 4 (Off-Campus rate)Tuition (IDC exempt)Total (Items 5,6,7)

 Table 3: Budget Summaries (ODU)

Budge	et: 100%					
Item	Description	Subtotal Direct	Total with IDC			
1	ODU Post Doc $(50\% \text{ FTE})$	\$47,000	\$59,220			
2	ODU Grad Student (100% FTE)	\$41,691	\$50,072			
3	Travel	\$6,117	\$7,708			
	Total 100% Budget		\$117,000			
Budg	Budget: 80%					
1	ODU Post Doc (50% FTE)	\$47,000	\$59,220			
2	ODU Grad Student $(50\% \text{ FTE})$	\$20,846	\$25,036			
3	Travel	\$6,146	\$7,744			
	Total 80% Budget		$\mathbf{\$92,000}$			
Budg	get: 60%					
1	ODU Post Doc (50% FTE)	\$47,000	\$59,220			
2	Travel	\$7,762	\$9,780			
	Total 60% Budget		\$69,000			

ODII (D

Additional Slides

Summary of Background Estimates

 \blacktriangleright Residual gas (Ion beam \otimes residual H gas)

- > < 10⁴ dissociation events / sec with potential to reach 2nd focus
- Random eA rate from physics collisions
 - ▶ ≈1.5•10⁵ / sec
 - ▶ Pileup probability per bunch crossing ≈0.12%

Parameters at the 2nd focus for different energies

	Value at			
Parameter	41 GeV	100 GeV	275 GeV	Units
β_x	0.85	0.8	0.5	m
D_x	0.48	0.48	0.47	m
ϵ_{x}	44	30	11.3	nm
σ_{δ} (10 ⁻⁴)	10.3	9.7	6.8	-
$1 - x_L (10^{-3})$	4.16	10.2	7	-