
A Repository for Common Analysis Criteria

Ideas for a Run Group A prototype

Christopher Dilks

RG-A Retreat

18 October 2023



C. Dilks -- Common Repository for Criteria 2

The Plan

Implement a repository of common methods 
shared among physics analyses, such as fiducial 
cuts and enhanced PID criteria.

This repository will aim to provide simple access to 
common techniques, and to preserve them under 
version control.

User-centered design: the software survey 

Implement a repository of common methods 
shared among physics analyses, such as fiducial 
cuts and enhanced PID criteria.

This repository will aim to provide simple access to 
common techniques, and to preserve them under 
version control.

User-centered design: the software survey 



C. Dilks -- Common Repository for Criteria 3

The Software Survey

User experience is critical to designing such a repository

Accumulating user feedback is the first step

This was the primary goal of the recent software survey

Additional questions of general interest to the CLAS 
Software Group were included

User experience is critical to designing such a repository

Accumulating user feedback is the first step

This was the primary goal of the recent software survey

Additional questions of general interest to the CLAS 
Software Group were included



C. Dilks -- Common Repository for Criteria 4

Number of Responses for each day

Survey Results

Disclaimer: 

● Results in these slides might not include responses received after Monday, October 16 th

● Later responses are certainly welcome and will be fully considered for the repository design and software group feedback.

● Focusing on the questions relevant for these slides

● Please take the survey if you haven’t!

13

10

5

2
1

31 Responses
(as of Monday, 10/16)



C. Dilks -- Common Repository for Criteria 5

Survey Results

(SI)DIS

DVCS 

DVMP

SRC

(Spin) Structure

KY
Hyperons

N*

Exclusive

J/psi

MesonEx

TCS

Very Strange

“None”

(SI)DIS

DVCS 
DVMP

SRC

(Spin) Structure

KY

Hyperons

N*

Exclusive

J/psi

MesonEx

TCS
Very Strange

“None”

General responses shown

Nothing surprising here…

Broad range!

General responses shown

Nothing surprising here…
Broad range!



C. Dilks -- Common Repository for Criteria 6

Survey Results

COATJAVA

Simulations

Machine Learning

Detectors

Calibration

Planning & Proposals
Analysis Criteria
● Momentum Corrections
● PID refinements

COATJAVA

Simulations
Machine Learning

Detectors

Calibration

Planning & Proposals

Analysis Criteria
● Momentum Corrections
● PID refinements



C. Dilks -- Common Repository for Criteria 7

Survey Results

Other(s):
● uproot
● pandas
● numpy



C. Dilks -- Common Repository for Criteria 8

Survey Results

Other(s):
● zsh
● a note about relative usage



C. Dilks -- Common Repository for Criteria 9

About the Language… 

1st: C++
2nd: Python
3rd: Bash
4th: Java
5th: Groovy / Csh
6th: Fortran / Perl

● Most people who use Java/Groovy/Python also use C++

● But what are these being used for?

● Very unlikely one does full analysis in Bash, but Bash 
is good for “glue”

● Better question: What languages are the (HIPO) data 
processed in?

● What language(s) are the existing common criteria in?



C. Dilks -- Common Repository for Criteria 10

Survey Results

Other(s):
● PAW ntuples
● MC files
● Pre-DST banks
● EVIO



C. Dilks -- Common Repository for Criteria 11

Survey Results

Other(s):
● Filter → event-by-event text files and 

ROOT trees with calculated kinematics



C. Dilks -- Common Repository for Criteria 12

Survey Results

Other(s):
● Forward Tagger corrections (part 

of momentum corrections?)



C. Dilks -- Common Repository for Criteria 13

Survey Results
RGM methods

Ports of Fiducial cuts from C++ to:
● Python
● Groovy
● Java?

Common RGA methods in Chanser

RGM methods

Ports of Fiducial cuts from C++ to:
● Python
● Groovy
● Java?

Common RGA methods in Chanser

Issue: ports and code duplication
● DRY: Don’t Repeat Yourself!
● If the C++ fiducial cuts are 

updated, who updates the ports?
● Are the ports cross checked?
● Automated testing?

Issue: ports and code duplication
● DRY: Don’t Repeat Yourself!
● If the C++ fiducial cuts are 

updated, who updates the ports?
● Are the ports cross checked?
● Automated testing?

Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Primarily stay lightweight and as 

framework-independent as possible

Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Primarily stay lightweight and as 

framework-independent as possible

https://github.com/esteejus/rgm
https://github.com/dglazier/chanser
https://github.com/esteejus/rgm
https://github.com/dglazier/chanser


C. Dilks -- Common Repository for Criteria 14

Survey Results

Mostly positive feedback!

Analyses will need to test and adapt

Website interaction desired

Easier than searching through analysis notes

One language

Peer review

Why not apply corrections during reconstruction?

Compatibility with C++/ROOT/Chanser/etc.

Run period dependence

Ability to customize

Executable on ifarm

Up-to-date documentation

Examples

Easy for new users

Kinematic calculations (e.g. particle → z, phi, etc.)

Polarization from closest Moeller measurement

C++ / Java / Python

Mostly positive feedback!

Analyses will need to test and adapt

Website interaction desired

Easier than searching through analysis notes

One language

Peer review

Why not apply corrections during reconstruction?

Compatibility with C++/ROOT/Chanser/etc.

Run period dependence

Ability to customize

Executable on ifarm

Up-to-date documentation

Examples

Easy for new users

Kinematic calculations (e.g. particle → z, phi, etc.)

Polarization from closest Moeller measurement

C++ / Java / Python

And some critical thoughts:

Difficult to create one-size-fits-all methods

Channel / observable / run period / analysis 
dependence is difficult

Do not be opaque, black box
● Stifle innovation
● Does not educate students
● May overlook a major issue in the code

Do not force a framework, should be flexible

Preference to do things themselves

And some critical thoughts:

Difficult to create one-size-fits-all methods

Channel / observable / run period / analysis 
dependence is difficult

Do not be opaque, black box
● Stifle innovation
● Does not educate students
● May overlook a major issue in the code

Do not force a framework, should be flexible

Preference to do things themselves



C. Dilks -- Common Repository for Criteria 15

Design



C. Dilks -- Common Repository for Criteria 16

Dominant Language Model

C++

Java Python FortranC++

Bindings / FFI

Fiducial
Cuts

PID
Cuts

…

API Level:
For the Users

Criteria “Algorithm” level:
The Code

Require all criteria (algorithms) to 
be in one “dominant” language, 
e.g., C++

Consistent and maintainable

If an algorithm is not in the 
dominant language, either:
● Port it to the dominant 

language
● Write a wrapper algorithm in 

the dominant language

Use bindings / foreign function 
interfacing to expose API in other 
languages
● SWIG
● JNI
● GraalVM
● …

Require all criteria (algorithms) to 
be in one “dominant” language, 
e.g., C++

Consistent and maintainable

If an algorithm is not in the 
dominant language, either:
● Port it to the dominant 

language
● Write a wrapper algorithm in 

the dominant language

Use bindings / foreign function 
interfacing to expose API in other 
languages
● SWIG
● JNI
● GraalVM
● …



C. Dilks -- Common Repository for Criteria 17

Free Model

Java

Python

Fortran

C++ Allow algorithms to be in any 
language
● No need to port or wrap any 

existing algorithms / criteria

Need bidirectional bindings 
between all of them
● 4 languages → 8 bindings

Hard to implement

Hard to maintain

Allow algorithms to be in any 
language
● No need to port or wrap any 

existing algorithms / criteria

Need bidirectional bindings 
between all of them
● 4 languages → 8 bindings

Hard to implement

Hard to maintain



C. Dilks -- Common Repository for Criteria 18

Data Communication

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● Algorithm I/O should be banks

HIPO data unit: HIPO bank
● Implementations: preferred to be standalone

● Java
● C++ (?)
● Python (?)
● Fortran (?)

Need bidirectional converters from the analysis “user” language to the 
dominant language (C++)

Exploring ideas of “language independent banks”
● JSON
● Hopefully conversion is not slow...

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● Algorithm I/O should be banks

HIPO data unit: HIPO bank
● Implementations: preferred to be standalone

● Java
● C++ (?)
● Python (?)
● Fortran (?)

Need bidirectional converters from the analysis “user” language to the 
dominant language (C++)

Exploring ideas of “language independent banks”
● JSON
● Hopefully conversion is not slow...

REC::Calorimeter

REC::Track

REC::Traj

REC::Particle

Fiducial Cuts

REC::Particle

● with only particles which 
pass the fiducial cuts

● maybe different name, but 
same structure



C. Dilks -- Common Repository for Criteria 19

Services

The algorithms will all have some basic common needs: “service singletons”
● Logging system

● Log-level control
● Silence for production, verbose for debugging
● Errors always print

● Unit system
● Define what is “1” in each system
● For example, in Geant4: 1 = mm = MeV = ns

● Algorithm configuration
● For example: fiducial cut levels (loose, medium, tight)
● Configuration file model

● Default config file: the defaults for all algorithms
● Handle run-period dependent configuration
● Users may override any part (or all) of it with custom config files

The algorithms will all have some basic common needs: “service singletons”
● Logging system

● Log-level control
● Silence for production, verbose for debugging
● Errors always print

● Unit system
● Define what is “1” in each system
● For example, in Geant4: 1 = mm = MeV = ns

● Algorithm configuration
● For example: fiducial cut levels (loose, medium, tight)
● Configuration file model

● Default config file: the defaults for all algorithms
● Handle run-period dependent configuration
● Users may override any part (or all) of it with custom config files



C. Dilks -- Common Repository for Criteria 20

Testing

Needed to maintain stability

Some Options for automated testing in Continuous Integration (CI):
● Unit tests, requiring high coverage
● clas12-validation: automated testing of full chain

● event generation → simulation → reconstruction → analysis
● no analysis step yet
● https://github.com/JeffersonLab/clas12-validation

Need also cross checks / peer review of algorithms

Needed to maintain stability

Some Options for automated testing in Continuous Integration (CI):
● Unit tests, requiring high coverage
● clas12-validation: automated testing of full chain

● event generation → simulation → reconstruction → analysis
● no analysis step yet
● https://github.com/JeffersonLab/clas12-validation

Need also cross checks / peer review of algorithms

https://github.com/JeffersonLab/clas12-validation
https://github.com/JeffersonLab/clas12-validation


C. Dilks -- Common Repository for Criteria 21

Documentation

We have analysis notes

The algorithm itself, although maybe hard to read, is effectively self-documenting
● Comment your code!
● Version control → algorithm is preserved

Documentation of common repository usage is a separate issue
● API documentation
● Examples

We have analysis notes

The algorithm itself, although maybe hard to read, is effectively self-documenting
● Comment your code!
● Version control → algorithm is preserved

Documentation of common repository usage is a separate issue
● API documentation
● Examples



C. Dilks -- Common Repository for Criteria 22

Containerization

Provide a Docker image with all dependencies + the common criteria repository, compiled 
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an 

automated process

Maintenance: everyone gets the same bugs

Provide a Docker image with all dependencies + the common criteria repository, compiled 
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an 

automated process

Maintenance: everyone gets the same bugs

Multi-lingual support → difficult to setup (compile) for users!
Too many dependencies!

Base image Layer
● Underlying Linux distribution
● Package updates
● Typical common software, e.g., 

vim, emacs
● Python, C++, Java, Groovy, Fortran

Common Physics Software Layer
● ROOT, PAW
● Geant4

CLAS Software Layer
● Clas12root
● Chanser
● Brufit
● … … … 
● Common criteria repository

Maintained by JLab (?)
Maintained by JLab (?)

Maintained by CLAS



C. Dilks -- Common Repository for Criteria 23

Pseudocode Prototyping

Banks are in the analysis code’s language

CommonAnalysisCriteria is
● In C++: the main class
● In Python: the main class, wrapping the 

C++ algorithms (needs some thought 
how to design…)

Banks are in the analysis code’s language

CommonAnalysisCriteria is
● In C++: the main class
● In Python: the main class, wrapping the 

C++ algorithms (needs some thought 
how to design…)



C. Dilks -- Common Repository for Criteria 24

Pseudocode Prototyping

The API code will handle the conversion 
from the analysis code banks to language-
independent banks, and call the 
appropriate underlying algorithm

These API methods could be auto-
generated

Assumes JSON is the “language 
independent bank” (needs some thought 
and testing)

The API code will handle the conversion 
from the analysis code banks to language-
independent banks, and call the 
appropriate underlying algorithm

These API methods could be auto-
generated

Assumes JSON is the “language 
independent bank” (needs some thought 
and testing)



C. Dilks -- Common Repository for Criteria 25

Pseudocode Prototyping

The algorithm itself follows the typical 3-
methods pattern:
● Init
● Process
● End

A main CommonAnalysisCriteria can 
handle
● Service initialization
● Algorithm configuration
● Cleanup at the end

The algorithm itself follows the typical 3-
methods pattern:
● Init
● Process
● End

A main CommonAnalysisCriteria can 
handle
● Service initialization
● Algorithm configuration
● Cleanup at the end



C. Dilks -- Common Repository for Criteria 26

Aside: Helicity Sign

For pass 1 QA, it was requested by the run groups to correct the helicity so that the π+ beam spin asymmetry 
(BSA) timeline has the correct sign

This will no longer be done for future QA timelines
● The QA is for finding issues, not fixing them

Instead: QA defect bit assigned for wrong BSA from REC::Event.helicity
● Every RGA run will have this defect bit
● No runs are “golden” (perfect), but they are still “OkForAsymmetry” and “OkForCrossSection” (new cut, to be 

implemented)
● Add to QADB: “HelicityConvention()”: if this BSA is wrong → user must flip helicity sign
● Automatically catches HWP issues

For pass 1 QA, it was requested by the run groups to correct the helicity so that the π+ beam spin asymmetry 
(BSA) timeline has the correct sign

This will no longer be done for future QA timelines
● The QA is for finding issues, not fixing them

Instead: QA defect bit assigned for wrong BSA from REC::Event.helicity
● Every RGA run will have this defect bit
● No runs are “golden” (perfect), but they are still “OkForAsymmetry” and “OkForCrossSection” (new cut, to be 

implemented)
● Add to QADB: “HelicityConvention()”: if this BSA is wrong → user must flip helicity sign
● Automatically catches HWP issues



C. Dilks -- Common Repository for Criteria 27

Aside: Other Run-Dependent and Run-Period-Dependent Values

Beam (or target) Polarization and Error – TODO

Trigger conditions – in RCDB (?)
Faraday Cup Charge – in HIPO files, and in QADB (for QA-filtered charge)

The correct beam energy (RCDB may not be “correct”) – proposed for CCDB
● Under discussion in SW group

Run-dependent values should go in RCDB or CCDB (e.g., beam polarization)

Finer bins (e.g., time bins or DST files) can go in QADB (e.g., charge)
● Pass 2 QA will be done in time bins, whereas Pass 1 was done by DST 5-files

Common software repository could serve info from these databases, but…
● This is a bit out of scope, since these databases already have APIs
● Wrapping APIs with more APIs adds unnecessary complexity (unless the underlying 

API is user unfriendly…)
● However, some algorithms may need to read the databases
● If desired, we can implement it (would just be sugar for the underlying DB API)

Beam (or target) Polarization and Error – TODO

Trigger conditions – in RCDB (?)

Faraday Cup Charge – in HIPO files, and in QADB (for QA-filtered charge)

The correct beam energy (RCDB may not be “correct”) – proposed for CCDB
● Under discussion in SW group

Run-dependent values should go in RCDB or CCDB (e.g., beam polarization)
Finer bins (e.g., time bins or DST files) can go in QADB (e.g., charge)
● Pass 2 QA will be done in time bins, whereas Pass 1 was done by DST 5-files

Common software repository could serve info from these databases, but…
● This is a bit out of scope, since these databases already have APIs
● Wrapping APIs with more APIs adds unnecessary complexity (unless the underlying 

API is user unfriendly…)
● However, some algorithms may need to read the databases
● If desired, we can implement it (would just be sugar for the underlying DB API)



C. Dilks -- Common Repository for Criteria 28

Outlook and Plans

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

I have these in C++, but may be out of date, or even wrong (though they have 
been cross checked); they are also in Chanser


	Title Here
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

