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The Plan

Implement a repository of common methods 
shared among physics analyses, such as fiducial 
cuts and enhanced PID criteria.

This repository will aim to provide simple access to 
common techniques, and to preserve them under 
version control.

User-centered design: the software survey 
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The Software Survey

User experience is critical to designing such a repository

Accumulating user feedback is the first step

This was the primary goal of the recent software survey

Additional questions of general interest to the CLAS 
Software Group were included
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Number of Responses for each day

Survey Results

Disclaimer: 

● Results in these slides might not include responses received after Monday, October 16 th

● Later responses are certainly welcome and will be fully considered for the repository design and software group feedback.

● Focusing on the questions relevant for these slides

● Please take the survey if you haven’t!
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1

31 Responses
(as of Monday, 10/16)
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Survey Results
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Survey Results
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Analysis Criteria
● Momentum Corrections
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Survey Results

Other(s):
● uproot
● pandas
● numpy
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Survey Results

Other(s):
● zsh
● a note about relative usage
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About the Language… 

1st: C++
2nd: Python
3rd: Bash
4th: Java
5th: Groovy / Csh
6th: Fortran / Perl

● Most people who use Java/Groovy/Python also use C++

● But what are these being used for?

● Very unlikely one does full analysis in Bash, but Bash 
is good for “glue”

● Better question: What languages are the (HIPO) data 
processed in?

● What language(s) are the existing common criteria in?
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Survey Results

Other(s):
● PAW ntuples
● MC files
● Pre-DST banks
● EVIO
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Survey Results

Other(s):
● Filter → event-by-event text files and 

ROOT trees with calculated kinematics
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Survey Results

Other(s):
● Forward Tagger corrections (part 

of momentum corrections?)
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Survey Results
RGM methods

Ports of Fiducial cuts from C++ to:
● Python
● Groovy
● Java?

Common RGA methods in Chanser
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● If the C++ fiducial cuts are 

updated, who updates the ports?
● Are the ports cross checked?
● Automated testing?
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Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Primarily stay lightweight and as 

framework-independent as possible

Chanser
● Includes RGA common methods

● Fiducial cuts
● PID refinements
● Vertex cuts
● (maybe more)

● Dependent on ROOT and clas12root (?)
● C++

Our goal for the common repository differs:
● Primarily stay lightweight and as 

framework-independent as possible

https://github.com/esteejus/rgm
https://github.com/dglazier/chanser
https://github.com/esteejus/rgm
https://github.com/dglazier/chanser
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Survey Results

Mostly positive feedback!

Analyses will need to test and adapt

Website interaction desired

Easier than searching through analysis notes

One language

Peer review

Why not apply corrections during reconstruction?

Compatibility with C++/ROOT/Chanser/etc.

Run period dependence

Ability to customize

Executable on ifarm

Up-to-date documentation

Examples

Easy for new users

Kinematic calculations (e.g. particle → z, phi, etc.)

Polarization from closest Moeller measurement

C++ / Java / Python
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And some critical thoughts:

Difficult to create one-size-fits-all methods

Channel / observable / run period / analysis 
dependence is difficult

Do not be opaque, black box
● Stifle innovation
● Does not educate students
● May overlook a major issue in the code

Do not force a framework, should be flexible

Preference to do things themselves
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Design
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Dominant Language Model

C++

Java Python FortranC++

Bindings / FFI

Fiducial
Cuts

PID
Cuts

…

API Level:
For the Users

Criteria “Algorithm” level:
The Code

Require all criteria (algorithms) to 
be in one “dominant” language, 
e.g., C++

Consistent and maintainable

If an algorithm is not in the 
dominant language, either:
● Port it to the dominant 

language
● Write a wrapper algorithm in 

the dominant language

Use bindings / foreign function 
interfacing to expose API in other 
languages
● SWIG
● JNI
● GraalVM
● …
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Free Model

Java

Python

Fortran

C++ Allow algorithms to be in any 
language
● No need to port or wrap any 

existing algorithms / criteria

Need bidirectional bindings 
between all of them
● 4 languages → 8 bindings

Hard to implement

Hard to maintain
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Data Communication

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● Algorithm I/O should be banks

HIPO data unit: HIPO bank
● Implementations: preferred to be standalone

● Java
● C++ (?)
● Python (?)
● Fortran (?)

Need bidirectional converters from the analysis “user” language to the 
dominant language (C++)

Exploring ideas of “language independent banks”
● JSON
● Hopefully conversion is not slow...

Need a standard of communication of information
● Users ↔ Algorithms
● Algorithms ↔ Other Algorithms
● Algorithm I/O should be banks

HIPO data unit: HIPO bank
● Implementations: preferred to be standalone

● Java
● C++ (?)
● Python (?)
● Fortran (?)

Need bidirectional converters from the analysis “user” language to the 
dominant language (C++)

Exploring ideas of “language independent banks”
● JSON
● Hopefully conversion is not slow...

REC::Calorimeter

REC::Track

REC::Traj

REC::Particle

Fiducial Cuts

REC::Particle

● with only particles which 
pass the fiducial cuts

● maybe different name, but 
same structure
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Services

The algorithms will all have some basic common needs: “service singletons”
● Logging system

● Log-level control
● Silence for production, verbose for debugging
● Errors always print

● Unit system
● Define what is “1” in each system
● For example, in Geant4: 1 = mm = MeV = ns

● Algorithm configuration
● For example: fiducial cut levels (loose, medium, tight)
● Configuration file model

● Default config file: the defaults for all algorithms
● Handle run-period dependent configuration
● Users may override any part (or all) of it with custom config files
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Testing

Needed to maintain stability

Some Options for automated testing in Continuous Integration (CI):
● Unit tests, requiring high coverage
● clas12-validation: automated testing of full chain

● event generation → simulation → reconstruction → analysis
● no analysis step yet
● https://github.com/JeffersonLab/clas12-validation

Need also cross checks / peer review of algorithms
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Documentation

We have analysis notes

The algorithm itself, although maybe hard to read, is effectively self-documenting
● Comment your code!
● Version control → algorithm is preserved

Documentation of common repository usage is a separate issue
● API documentation
● Examples
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Containerization

Provide a Docker image with all dependencies + the common criteria repository, compiled 
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an 

automated process

Maintenance: everyone gets the same bugs

Provide a Docker image with all dependencies + the common criteria repository, compiled 
and ready to use
● Analysis code would run in containers, either locally or on clusters (ifarm, OSG)

Customization:
● Straightforward to replace software with no dependents
● Replacing upstream software may require recompilation of dependent software
● Adopt upstream package manager (e.g., Spack)

Continuous Deployment: most recent version
● Combined with a package manager makes replacing any piece of software an 

automated process

Maintenance: everyone gets the same bugs

Multi-lingual support → difficult to setup (compile) for users!
Too many dependencies!

Base image Layer
● Underlying Linux distribution
● Package updates
● Typical common software, e.g., 

vim, emacs
● Python, C++, Java, Groovy, Fortran

Common Physics Software Layer
● ROOT, PAW
● Geant4

CLAS Software Layer
● Clas12root
● Chanser
● Brufit
● … … … 
● Common criteria repository

Maintained by JLab (?)
Maintained by JLab (?)

Maintained by CLAS
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Pseudocode Prototyping

Banks are in the analysis code’s language

CommonAnalysisCriteria is
● In C++: the main class
● In Python: the main class, wrapping the 

C++ algorithms (needs some thought 
how to design…)
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Pseudocode Prototyping

The API code will handle the conversion 
from the analysis code banks to language-
independent banks, and call the 
appropriate underlying algorithm

These API methods could be auto-
generated

Assumes JSON is the “language 
independent bank” (needs some thought 
and testing)
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Pseudocode Prototyping

The algorithm itself follows the typical 3-
methods pattern:
● Init
● Process
● End

A main CommonAnalysisCriteria can 
handle
● Service initialization
● Algorithm configuration
● Cleanup at the end

The algorithm itself follows the typical 3-
methods pattern:
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● Process
● End
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● Service initialization
● Algorithm configuration
● Cleanup at the end
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Aside: Helicity Sign

For pass 1 QA, it was requested by the run groups to correct the helicity so that the π+ beam spin asymmetry 
(BSA) timeline has the correct sign

This will no longer be done for future QA timelines
● The QA is for finding issues, not fixing them

Instead: QA defect bit assigned for wrong BSA from REC::Event.helicity
● Every RGA run will have this defect bit
● No runs are “golden” (perfect), but they are still “OkForAsymmetry” and “OkForCrossSection” (new cut, to be 

implemented)
● Add to QADB: “HelicityConvention()”: if this BSA is wrong → user must flip helicity sign
● Automatically catches HWP issues
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Aside: Other Run-Dependent and Run-Period-Dependent Values

Beam (or target) Polarization and Error – TODO

Trigger conditions – in RCDB (?)
Faraday Cup Charge – in HIPO files, and in QADB (for QA-filtered charge)

The correct beam energy (RCDB may not be “correct”) – proposed for CCDB
● Under discussion in SW group

Run-dependent values should go in RCDB or CCDB (e.g., beam polarization)

Finer bins (e.g., time bins or DST files) can go in QADB (e.g., charge)
● Pass 2 QA will be done in time bins, whereas Pass 1 was done by DST 5-files

Common software repository could serve info from these databases, but…
● This is a bit out of scope, since these databases already have APIs
● Wrapping APIs with more APIs adds unnecessary complexity (unless the underlying 

API is user unfriendly…)
● However, some algorithms may need to read the databases
● If desired, we can implement it (would just be sugar for the underlying DB API)
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Outlook and Plans

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

Focus prototype design on:
● Run Group A
● Fiducial Cuts
● PID Refinements

Need maintainers of common methods
● …Eventually… after the design and prototyping phase

Anyone want to help test and design?
● Service work opportunity?

I have these in C++, but may be out of date, or even wrong (though they have 
been cross checked); they are also in Chanser
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