TDIS mTPC update

M. Eric Christy

Jefferson Lab

Hall A Collaboration Meeting, January 16, 2024

The Tagged Deep Inelastic Scattering (TDIS) Experiment C12-15-005

Spokespersons: D. Dutta, N. Liyanage, C. Keppel, P. King, R, Montgomery, B. Wojtsekhowski

Goal:

Provide 1st direct measurement of the mesonic content of the nucleon and a unique extraction of the pion's F₂ structure functions by scattering from a virtual pion target, accessed via spectator tagging.

Pions and kaons are the simplest bound states of QCD and its Nambu-Goldstone bosons- knowledge of meson structure is critical to a complete understanding of the emergence of hadron mass. But, very little data due to the lack of "meson targets".

Motivations:

TDIS will use spectator tagging - well established technique (eg. BONuS) - to tag the "meson cloud" of the nucleon.

TDIS is a pioneering experiment but the proposed technique to extract meson structure function is an essential first step for future experiments at the EIC & 22 GeV JLab.

D. Dutta

Although no direct measurement of magnitude of mesonic content of nucleons...

Data from Drell-Yan experiments in valence region

Calculations with the gluonic contributions can explain data

... but more precise data needed

L. Chang, C. Mezrag, H. Moutarde, C. D. Roberts, J. Rodriguez-Quintero, P. C. Tandy, Phys. Lett. B420, 267 (2014) C. Chen, L. Chang, C. D. Roberts, S. Wan and H.-S. Zong, Phys. Rev. D 93, 074021 (2016)

6 🖉 🖗

D. Dutta

Spectator Tagging can be used to tag the "meson cloud" target.

DIS event – reconstruct x, Q², W², also M_x of recoiling hadronic system

$$R^{T} = \frac{d^{4}\sigma(ep \rightarrow e^{'}Xp^{'})}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \rightarrow e^{'}X)}{dxdQ^{2}} \Delta z\Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z\Delta t.$$

Tagged structure function a direct measure of the mesonic content of nucleons

$$F_2^T(x,Q^2,z,t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x,Q^2).$$

D. Dutta

Two run group experiments endorsed (kaon TDIS & nTDIS)

Experimental Setup

TDIS will be a pioneering experiment that will be the first direct measure of the mesonic content of nucleons.

The techniques used to extract meson structure function will be a necessary first step for future experiments

Deuteron Spectator proton (backward going slow proton)

Recent Work

A comprehensive Geant4 based simulation with digitization has been developed and validated with BoNUS12 data.

A new hadron blind gas Cherenkov detector is being designed by new collaborators from U. of Tennessee

Penny Duran (UofA), Burcu Duran (UT), Nadia Fomin (UT)
Requirements: discrimination between
electrons and pions in the 2 GeV – 11 GeV range
UT proposes a threshold Cherenkov detector
based on SHMS NGC
4 meters long
Neon or Argon/Neon at 1atm

9 PE at 11 GeV/<u>c</u>

The LAC has been refurbished and is being tested and a FPGA based electron trigger will be developed

mTPC conceptual design

High rate multiple time projection chamber (mTPC) to tag recoiling/spectator hadrons

Target: 25 um wall thickness Kapton straw at room temperature and 3 atm. pressure.

- Each TPC module of the composite mTPC will be exposed to a fraction of the total background rate.
- The drift field is parallel to the magnetic field, leading to reduced drift times and significantly simplified track reconstruction.
- Each cathode will be shared by 2 TPCs with separate drift regions, GEM layers, and readout boards.

Readout Board

CAD design: K. Gnanvo

- Decreasing pad sizes at small radii for better
- separation of tracks and ϕ resolution.

High rate and high occupancy tracking algorithms have been developed and are being optimized

Readout for mTPC has been developed using the SAMPA chip

JLab Cosmics Test Stand FEC, coupled to GEM detector

SAMPA V5 - 80 ns shaping time

SAMPA can be used in streaming mode or triggered mode

mTPC prototype will be testing using the sPHENIX TPC Front-end card (FEC)

Effort led by E. Jastrzembski Jlab FE

MTPC High Voltage

- 5 independently powered, double-sided TPC Modules
- Each TPC module has
 - $\rightarrow\,$ 2 drift regions, GEM amplification layers, readout boards
 - \rightarrow shared Cathode
- Single HV to GEMs with voltage divider chain
 - \rightarrow 3 HV channels for each double-sided TPC
 - \rightarrow 15 channels total required.
- Want capacity for over 1.5 kV /cm to shorten drift time window for reduced backgrounds – over 10 kV required.
- CAEN R1570ET to power each MTPC segment. (4-channels, 15 kV max)
- HV supply in hand cables being made by Fast Electronics - expected around the end of this month.

Rectangular prototype designed and constructed at Uva.

- \rightarrow 5 cm drift
- → 3 stage GEMs
- \rightarrow 3 different sizes of readout pads

Testing is currently underway at JLab

- → validate field cage, readout
- → test tracking algorithms
- → study track resolution for different pad sizes.
- $\rightarrow\,$ study different drift gases.

TDIS prototype TPC tested with JLab FA125 VME system

 \rightarrow Allows for testing same DAQ and frontend electronics we plan to use for pCT system

Preamp cards with shaper 24 channels per card / 5 cards per baseboard

Currently Instrumented pads

FA125 waveforms for cosmic events

- GEM HV @ ~3100 V
- Waveforms (Q vs time bin) for events
- 8 ns / time bin allows separating hits from pileup protons.
- multiple channels (pads) contributing
- 12 bit ADC 4096 max bin in Q
- → Some channels saturating
 => lowered HV to reduce gain

Drift velocity measurements

(Rachael Hall, Duquesne U. SULI student)

Expect hits along tracks to be uniformly populated in position and, therefore, in drift time.

=> Range of drift time distribution dt = t_{max} -t_{min} corresponds to time for full 5 cm drift and removes amplification and signal propagation time.

$$v_{drift} = 5 \text{ cm / } \text{dt}$$

Note: the gas percentage uncertainty is +/- 2%.

Runs with range of E_{driff} for Ar/CO2 90/10

Examples of reconstructed 3-D track hits

(Sudipta Saha, JLab)

Tracks not fitted. Lines just to guide the eye

- \rightarrow Many reasonable looking tracks
- \rightarrow Allow checks of channel map
- → Allow basic tests of tracking
- \rightarrow Study track resolution.

Ongoing tests – vertical orientation

Reconstructed 3-D track hits (vertical orientation)

MTPC Detailed Design and Construction plan getting underway

Anticipated CY2024 Work

- January
 - Continue cosmic testing of rectangular TPC prototype
 - => provide data tracking group for basic algorithm testing
 - Begin MTPC prototype module design work.
- February
 - Complete test stand in EEL126, continue cosmic tests (varying drift gases)
 - Validate HV cables to > 12 kV
- Spring
 - Begin test of rectangular TPC readout with SAMPA FE.
- Summer
 - Test jigs and construction techniques for mTPC
- Fall
 - Begin construction of mTPC prototype module

Much more to come this year!

Thanks!

Backup Slides

T. J. Hobbs, Few-Body Cyst. 56, 363–368 (2015); H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996); W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

Full momentum range (collected simultaneously) - all momentum bins in MeV/c Error bars largest at highest x points - at fixed x, these are the lowest t values

some kinematic limits:
150 < k < 400 MeV/c corresponds to z < ~0.2
Also, x < z
Low x, high W at 11 GeV means Q² ~2 GeV²

spiral wound 25 um kapton straw Target

UVa 4T Solenoid

Pressure tested to 60 psi