

Hall A Winter Collaboration meeting, Jan 16 - 17, 2024

Xinzhan Bai (UVa)

on behalf of the SoLID Collaboration

Outline

□ Overview Generalized Parton Distributions □ SoLID GPD Program □ Summary

The SoLID Program

- Full exploration of JLab 12 GeV upgrade with broad physics program
- □ Capability to handle high luminosity
- □ Large acceptance with full 2π azimuthal angle coverage, with polar angle coverage: 8° ~ 24°
- □ Two major configurations with detectors interchangeable
 - ☑ PVDIS (See Ye Tian's talk)
 - Fundamental symmetries: standard model test and hadron structure
 - - Nucleon structure: 3D imaging of the nucleon in momentum space in valence quark region
 - QCD: probe the color field in the nucleon, access to QCD conformal anomaly $-J/\psi$ production at threshold
 - **GPD** program

Nucleon's Structure Functions

Generalized Parton Distributions

- □ Correlates 1D longitudinal momentum and 2D transverse position (Fourier Transform)
- □ GPDs are universal quantities and reflect nucleon structure independently of the probing reaction
- □ 8 GPDs at leading twist
 - □ Chiral Even GPDs, helicity of Parton unchanged: $H^{q/g}, E^{q/g}, \tilde{H}^{q/g}, \tilde{E}^{q/g},$
 - □ Chiral Odd or transversity GPDs, helicity of Parton flipped: $H_T^{q/g}$, $E_T^{q/g}$, $\tilde{H}_T^{q/g}$, $\tilde{E}_T^{q/g}$
- □ Access through exclusive processes (DVCS, DVMP, DDVCS, TCS, ...), Factorization Theorem

spin	N no flip	N flip	e' t Hard
q no flip	Н	E	$\frac{\gamma^* (Q^2)}{x+\xi} = \frac{Factorizatio}{x-\xi}$
q flip	Ĥ	$ ilde{E}$	p H, \tilde{H} , E, \tilde{E} (x, ξ , t) Soft p'

Deeply Virtual Compton Scattering (DVCS) is the **Golden Channel** for accessing GPDs

 $\sigma(lp \rightarrow l\gamma p) \propto |\tau_{DVCS}|^2 + I + |\tau_{BH}|^2$

Access GPDs via Interference Terms $I = |\tau_{DVCS} \tau_{BH}^{\star} + \tau_{DVCS}^{\star} \tau_{BH}|^2$

□ DVCS only measures *Compton Form Factors (CFFs)*

$$\tau_{DVCS} \propto \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi \mp i\epsilon} dx = P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm \Re e(\mathcal{H}))$$
$$\Re e(\mathcal{H})$$

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

5

General Compton Processes Accessing GPDs

□ Different exclusive processes, different experimental observables, crucial to fully disentangle GPDs

(Re) DVMP: cross-section, asymmetries

The SoLID GPD Program

\Box Deep Exclusive π^- Production using Transversely Polarized ³He Target

□ G.M. Huber, Z. Ahmed, Z. Ye

 \Box Approved as run group with Transverse Pol. ³*He* SIDIS (E12-10-006B)

LH2 target

□ Z.W. Zhao, P. Nadel-Turonski, J. Zhang

 \Box Approved as run group with J/ψ (E12-12-006A)

Double Deeply Virtual Compton Scattering (DDVCS) in di-lepton channel on unpolarized LH2 Target

□ E. Voter, M. Boer, A. Camsonne, K. Gnanvo, N. Sparveri, Z. Zhao

□ LOI 2015, LOI 2023

DVCS on polarized ${}^{3}He$

 \Box Z. Ye (under study)

- **Timelike Compton Scattering (TCS) with circularly polarized beam and unpolarized**

1. DEMP

E12-10-006B: Deep Exclusive π^- from Transversely Polarized *n*

Probe GPD \tilde{E} with **DEMP**

- GPD \tilde{E} connects to nucleon Pseudoscalar Form Factor:
- $\sum_{q} e_q \int_{-1}^{+1} dx \tilde{E}^q(x,\xi,t) = G_p(t)$
- $G_p(t)$ is poorly known because it is negligible at the momentum transfer of β -decay
- GPD \tilde{E} is not related to any already known Parton distributions \rightarrow essentially unknown
- SOLID experimental measurement can provide new nucleon structure information unlikely to be available from any other sources

\Box The most sensitive observable to probe \tilde{E} is the transverse single-spin asymmetry in exclusive π production:

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

 $A_{L}^{\perp} = \frac{\left(\int_{0}^{\pi} d\beta \frac{d\sigma_{L}}{d\beta} - \int_{\pi}^{2\pi} d\beta \frac{d\sigma_{L}}{d\beta}\right)}{\left(\int_{0}^{2\pi} d\beta \frac{d\sigma_{L}}{d\beta}\right)}$ $\pi \xi_{\mathbf{N}} / 1 - \xi^2 Im(\tilde{E} * \tilde{H})$ $2m_p (1-\xi^2)\tilde{H}^2 - \frac{t\xi^2}{4m_p}\tilde{E}^2 - 2\xi^2 Re(\tilde{E}^*\tilde{H})$

dependence to extract asymmetry

Need large acceptance

DEMP—**Polarized ³He SIDIS Configuration**

- DEMP run in parallel with SIDIS (E12-10006): 11.0 GeV beam, polarized ³He target, 48 days
- Online Coincidence Trigger (SIDIS): Electron trigger + Hadron Trigger (pions)
- □ Offline analysis: Identify (tag) protons and form triple-coincidence No effect to SIDIS Experiment

E12-10-006B: Deep Exclusive π^- from Transversely Polarized *n*

- \Box Data binned into 7 *t*-bins, concentrating on the $Q^2 > 4 \text{GeV}^2$ region of greatest physics interest
- \Box HERMES and COMPASS experiments are restricted kinematically to very small skewness ($\xi < 0.1$)
- \Box With SoLID, we can measure the skewness dependence of the relevant GPDs over a fairly large range of ξ

11

E12-10-006B: Deep Exclusive π^- from Transversely Polarized n

- \Box A wide -t coverage needed to obtain good understanding of the transverse single spin asymmetry
- □ SoLID's large acceptance and high luminosity well-suited to this measurement
- □ World unique, cannot be done anywhere else

Goloskokov and Kroll Eur. Phys. J. C 65, 137 (2010)

Notice the different axes scale: Significant improvement on uncertainties

2. TCS

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

E12-12-006A: TCS with Circular Polarized Beam and LH2 Target

- \Box Approved as run group with SoLID J/ψ (E12-12-006)
- □ Sharing the beam time and using the same trigger on decay e^-e^+ pair only
- □ Motivation
 - □ Access real and imaginary part of GPD *H* through CFF
 - □ Access the same GPDs like DVCS and test universality
 - □ New observables for global GPD fits

 $\gamma p \rightarrow \gamma^{\star}(e^+e^-)p'$

E12-12-006A: TCS with Circular Polarized Beam and LH2 Target

□ SoLID extends CLAS12 measurements

□ Promising TCS measurement results from CLAS12

$$A_{\odot U}(-t, E_{\gamma}, M; \phi) = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-},$$

- asymmetry A_{FR} (access D-term)
- □ Limited by low statistics

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

E12-12-006A: TCS with Circular Polarized Beam and LH2 Target

- □ SoLID TCS will have at least 1 order larger statistics than CLAS12 and usher TCS study into precision era with multi-dimensional binning
 - \square 15 cm LH2 target, $3\mu A$ current, $1.2 \times 10^{37}/cm^2/s$ luminosity, 50 + 10 days
 - □ SoLID TCS has **250 times more integrated luminosity** than the CLAS12 TCS published result
 - □ SoLID acceptance to TCS events is about 1/4 of CLAS12, but with full azimuthal coverage, (ideal for the forward-backward asymmetry)
 - Cross-section measurement (moment): R =

□ SoLID TCS could lead to study of NLO correction

Projected R uncertainties: cosine moment of the cross section *(leading order, leading twist)*

Solid blue line: dual parametrization GPD model

Middle dash line: double distribution with D-term

Bottom dash line: without D-term

 $\frac{2\int_{0}^{2\pi} d\phi \cos\phi \frac{dS}{dQ^2 dt d\phi}}{\int_{0}^{2\pi} d\phi \frac{dS}{dQ^2 dt d\phi}}$

SoLID TCS Coverage counts

counts

- 6000 5000
- 3000 2000
- 1000

3. DDVCS

DDVCS with circular polarized beam and LH2 target

- □ Under development Letter of Intent 2015 and 2023
- Double Deeply Virtual Compton Scattering explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS
- □ SoLID, with added muon detectors at forward angle, enables DDVCS measurements with both polarized electron and positron beams at 11 GeV
- \Box Share running time and inspect muon channels as well for J/ψ and TCS

SoLID DDVCS

 $e^-p \rightarrow e^-\gamma^{\star}(\mu^-\mu^+)p'$

SoLID Muon Detector

- \Box Di-muon channel: $e^-p \rightarrow e^-\gamma^*(\mu^-\mu^+)p'$
- \Box SoLID J/ψ configuration + muon detector (iron plate + scintillator)
- □ Iron plate to block pion, straw tube for tracking, and scintillator for trigger

SoLID collaboration LOI 2023

DDVCS with circular polarized beam and LH2 target

 μ acceptance forward angle

SoLID collaboration LOI 2023

Total expected BH muon pairs detected for the run time

DDVCS with circular polarized beam and LH2 target

SoLID collaboration LOI 2023

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

DVCS with Polarized Electron Beam and Target

- □ Approved 12 GeV polarized DVCS experiments (*Hall B & C*) □ Mostly with **proton** targets
- GPD study needs both proton and neutron data (flavor decomposition, ...), and all types of observables (GPD disentangling, ...)
- □ SoLID is the unique place for a DVCS experiment on **neutron** targets □ He3: transversely and longitudinally polarized neutron target
 - □ NH3: transversely polarized proton target
- **Currently still under study** no proposal yet

Approved 12GeV DVCS experiments:

- E12-16-010B (Hall-B): unpol. proton, XS
- E12-11-003 (Hall-B): unpol. Deuteron, BSA
- E12-06-119 (Hall-B): long-pol proton, BSA, TSA,
- C12-12-010 (Hall-B): conditional approved, trans. pol. Proton, TSA, BSA
- C12-15-004 (Hall-B): conditional approved, long. pol. Deuteron, TSA, BSA
- E12-06-114 (Hall-A&C): unpol. proton, XS & BSA, limited coverage
- E12-13-010 (Hall-C): unpol. proton, XS,
- E12-15-001 (Hall-C): proton, XS
- LOI: nDVCS w/ TDIS setup (Hall-A), tagged neutron, XS

Polarization	Asym
Longitudinal Beam	
Longitudinal Target	,
Long. Beam + Long. Target	
Transverse Target	,
Long. Beam +Trans.Targt	,

Polarization variables for GPD study

Projection: one (Q^2, x, t) bin out of 1000+ bins

Zhihong Ye, Tsinghua University

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

 $Re\{\mathcal{H}_n\}$

- □ SoLID spectrometer's High Luminosity and Large Acceptance are key to GPD measurements using exclusive processes
- Multi-dimensional binning with high statistics
- □ SoLID has a broad exclusive physics program for GPD measurements:
 - DEMP approved, SIDIS run group experiment
 - DVCS under study
 - TCS approved, J/ψ run group experiment
 - DDVCS under study, add muon detector to SIDIS configuration
- □ More ideas (e.g. deuterium and other nuclear targets)

SoLID Collaboration

- 270+ collaborators, 70+ institutions from 13 countries
- Active development and validation of the design and physics programs
- Strong theory support

Backup Slides

Generalized Parton Distributions

 GPDs connects to nucleon elastic form factors through model-independent sum rules

$$\sum_{q} e_{q} \int_{-1}^{+1} dx H^{q}(x,\xi,t) = H$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \tilde{E}^{q}(x,\xi,t) = H$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \tilde{H}^{q}(x,\xi,t) = 0$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \tilde{E}^{q}(x,\xi,t) = 0$$

Hall A Winter Collaboration Meeting, Jan 16-17, 2024

 $F_1(t)$

Dirac and Pauli FF : t-dependence fairly well-known

 $F_2(t)$

 $\begin{array}{ll} Axial \ FF:t-\\ G_A(t) & dependence \ poorly\\ known \end{array}$

 $G_P(t)$

Pseudoscalar FF : very poorly known

