Measurement of the weak neutral form-factor of the proton at high momentum transfer

Kent Paschke
University of Virginia

E12-23-004
Spokespeople: R.Beminiwattha, D.Hamilton, C. Palatchi, KP, B.Wojtsekhowski
LaTech, Glascow, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W\&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Nucleon Form Factors at High \mathbf{Q}^{2}

- One might expect a transition to perturbatively dominated mechanisms
- Other degrees of freedom might become evident, such as orbital angular momentum or diquark structure
- Part of the 3D mapping of nucleon structure as the first moment of GPDs at $\xi=0$

$$
\begin{aligned}
\int_{-1}^{+1} d x H^{q}\left(x, 0, Q^{2}\right) & =F_{1}^{q}\left(Q^{2}\right) \\
\int_{-1}^{+1} d x E^{q}\left(x, 0, Q^{2}\right) & =F_{2}^{q}\left(Q^{2}\right)
\end{aligned}
$$

These implications rely on extracting the independent quark contributions

Charge symmetry and the nucleon form factors

Charge Symmetry

$G_{E}^{p}=\frac{2}{3} G_{E}^{u, p}-\frac{1}{3} G_{E}^{d, p}-\frac{1}{3} G_{E}^{s}$
$G_{E}^{n}=\frac{2}{3} G_{E}^{u, n}-\frac{1}{3} G_{E}^{d, n}-\frac{1}{3} G_{E}^{s}$

Charge symmetry is assumed for the form factors, $G_{E}^{u, p}=G_{E}^{d, n}$, etc. and used to find the flavor separated form-factors,
measuring $G_{E, M}^{p, n}$ to find $G_{E, M}^{u, d}$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the " 2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

$$
G_{E}^{p, Z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E}^{u, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{d, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{s}
$$

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$
\begin{aligned}
\delta G_{E}^{u} & \equiv G_{E}^{u, p}-G_{E}^{d, n} \\
\delta G_{E}^{d} & \equiv G_{E}^{d, p}-G_{E}^{u, n}
\end{aligned}
$$

So, more generally: the assumption of charge symmetry is crucial to the flavor decomposition of the form factors

Parity Violating Electron Scattering

Elastic e-p scattering with longitudinally polarized beam and unpolarized target:

Weak and EM amplitudes interfere:

$$
\sigma=\left|\mathcal{M}_{\gamma}+\mathcal{M}_{Z}\right|^{2}
$$

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \sim
$$

Expressing Apv for e-p scattering, with proton and neutron EM form-factors plus strange form factors:

$$
\begin{gathered}
A_{P V}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \cdot\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}-\frac{\left.\epsilon G_{E}^{p}\left(\overline{G_{E}^{s}}\right)+\tau G_{M}^{p} \mathcal{G}_{M}^{s}\right)}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right. \\
\left.+\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) \frac{G_{M}^{p} G_{A}^{Z p}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right]
\end{gathered}
$$

This technique was used to hunt for indications of strange quark contributions in the nucleon, particularly in the static (i.e. $Q^{2} \rightarrow 0$) properties: a strange charge radius or strange magnetic moment

Proton strange form factors via parity violating elastic electron scattering

Strange form factors are measured to be consistent with zero at low Q2,
but do not rule out non-zero values at higher Q^{2},
especially for magnetic form factor which is more accessible at higher Q^{2}

Strange form-factors on the lattice

J. Green et al., Phys. Rev. D 92, 031501 (2015)

Some lattice calculations predict central values which are small, 10x below the limit of low Q^{2} studies.

But they do not apparently fall with Q^{2}. These values would be significant contributions at high Q^{2}

(a)

(b)

Strange form-factor predictions

T.Hobbs \& J.Miller, 2018

Follows work from Phys.Rev.C 91 (2015) 3, 035205
(LFWF to tie DIS and elastic measurements in a simple model)

Conclusion: sFF small (but non-zero) at low Q^{2}, but quite reasonable within constraints from data to think that they may grow relatively large at large Q^{2}

To set the scale of the data constraints: the width of the uncertainty band at $\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}$ is approximately the size of the dipole form-factor parameterization G_{D}

$$
\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{D}} \sim 1 \text { is not excluded }
$$

Such a large SFF could be huge in a proton PV measurement

$$
\delta A_{P V} \sim \pm 22 \mathrm{ppm}, \sim \pm 15 \% \text { of } A_{P V}^{n s}
$$

The planned measurement

Aim for $\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}$

Identify elastic kinematics with electron-proton coincidence

- Angular e-p correlation, 6.6 GeV beam energy

Proton
(electron at 15.5 degrees, proton at 42.4 degrees)

- High resolution calorimeter trigger for electron arm
- Calorimeter trigger for proton arm
- Scintillator array on proton arm, to improve position resolution

- $\mathrm{APV}=150 \mathrm{ppm}, 4 \%$ precision goal, so 3×10^{10} elastic scattering events
- $\mathcal{L}=1.7 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}, 10 \mathrm{~cm} \mathrm{LH} 2$ target and $65 \mu \mathrm{~A}$ beam current
- Full azimuthal coverage, ~42 msr

Calorimeters reusing components

NPS electromagnetic calorimeter

- $1200 \mathrm{PBWO}_{4}$ scintillators, PMTs + bases

SBS hadronic calorimeter

- 288 iron/scintillator detectors, PMTs + bases

Detector System

HCAL - hadron calorimeter

- Detector elements from the SBS HCAL
- 288 blocks, each $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Detector elements from the NPS calorimeter
- 1200 blocks, each $2 \times 2 \times 20 \mathrm{~cm}^{3}$
- PbWO_{4} scintillator

Scintillator array

- 7200 plastic scintillators, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$
- Wavelength shifting fiber to MA-PMT
- Used for position resolution in front of HCAL

Experimental concept

Preliminary design of scattering chamber

He bag will reduce backgrounds between target chamber and exit beampipe

This fits in Hall C (but it's tight)

Trigger: calorimeters, with geometric coincidence

A relatively high ECAL cut ($\sim 66 \%$ of beam energy) and loose e-p coincidence cut provides high efficiency and manageable data rate

$\mathrm{ECAL}>4.5 \mathrm{GeV}: 150 \mathrm{kHz}$
$\mathrm{ECAL}+\mathrm{HCAL}$ in coincidence: 35 kHz

Fraction of total by event type	Online
Elastic scattering	0.531
Inelastic (pion electro-production)	0.450
Quasi-elastic scattering (target windows)	0.015
π^{0} photo-production	0.004

Elastic event discrimination

Offline: tighten geometric cut with pixel hodoscope and ECAL cluster center

Exclude inelastic background to ~0.2\%

Fraction of total by event type	Offline
Elastic scattering	0.989
Inelastic (pion electro-production)	0.002
Quasi-elastic scattering (target windows)	0.008
π^{0} photo-production	0.001

"sideband" analyses will help verify QE and inelastic asymmetries

Projected result

$$
\begin{gathered}
A_{\mathrm{PV}}=150 \mathrm{ppm} \text { (if no strange FF) } \\
\delta \mathrm{A}_{\mathrm{PV}}= \pm 6.2 \text { (stat) } \pm 3.3 \text { (syst) } \quad \text { (} \delta \mathrm{A} / \mathrm{A}= \pm 4 \% \pm 2 \% \text {) } \\
\delta\left(G_{E}^{s}+3.1 G_{M}^{s}\right)= \pm 0.013 \text { (stat) } \pm 0.007 \text { (syst) }=0.015 \text { (total) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } G_{M}^{s}=0, \delta G_{E}^{s} \sim 0.015, \quad\left(\text { about } 34 \% \text { of } \mathrm{G}_{\mathrm{D}}\right) \\
& \text { If } G_{E}^{s}=0, \delta G_{M}^{s} \sim 0.005,\left(\text { about } 11 \% \text { of } \mathrm{G}_{\mathrm{D}}\right)
\end{aligned}
$$

The proposed measurement is especially sensitive to G_{M}^{s}
The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Next Step - Test Performance of Detector Concept

electron angle 15.5° proton angle 42.4°

Electron to SHMS

One can position the SHMS to 15.5° to detect electrons, measured in coincidence with a prototype proton detector at 42.4°

Prototype proton detector:

- pixel array of 32 small scintillators with MA-PMT readout with 6 SBS HCAL blocks
- NINO card front-end, FADC readout
- 50 uA on 15 cm Hydrogen target at 6.6 GeV , about 2 kHz rate into detector
- test elastic identification and background rate

Summary

- 10+ years after the last sFF searches were performed, a new experime $f^{2} t \in G_{\xi} \xi 4 f \mathscr{f}^{2} w$ planned for much higher Q^{2}, motivated by interest in flavor decomposition of electromagnetic form factors
- Projected accuracy at $\sim 11 \%$ of the dipole value allows high sensitivity search for non-zero strange form factor.
-The proposed error bar is in the range possibly suggested by lattice predictions, and significantly smaller than the uncertainty range in the extrapolation from previous strange form-factor data
-PAC approved, but needs funding and devlopment. Schedule is as yet uncertain, but the path forward is clear.

