Preparing for GEn-RP and KLL

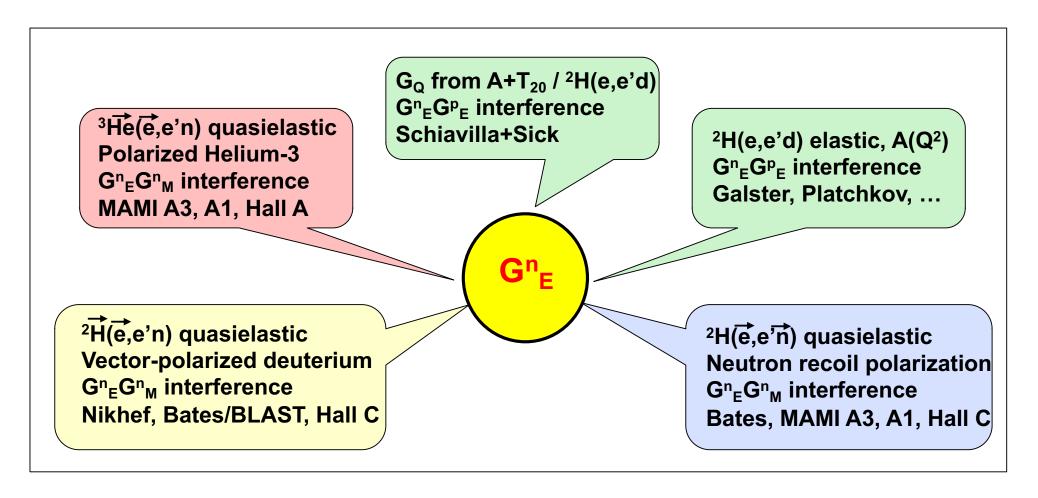
Michael Kohl <kohlm@jlab.org> * for the SBS Collaboration

GEn-RP Spokespeople: D. Hamilton, M.K., W. Tireman, B. Wojtsekhowski, J. Annand**, E. Bellini** and N. Piskunov**

KLL: J. Arrington, A.J.R. Puckett, A.S. Tadepalli, B. Wojtsekhowski

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

^{*} Supported by DOE DE-SC0013941, and by NSF PHY-2113436, and JSA Joint Appointment ** Retired


Thank you for input from

- Senior physicists
 - D. Hamilton, W. Tireman, B. Wojtsekhowski, H. Szumila-Vance, N. Liyanage,
 - E. Brash
- Graduate studentsSarashowati Dhital
- For the latest previous review of GEn-RP (E12-17-004) see
 W. Tireman, SBS Collaboration meeting, July 17–18, 2023
 https://indico.jlab.org/event/721/contributions/13219/attachments/10047/14951/Tireman_GEnRP_July17_Update_v2.pdf
- The GEn-RP collaboration likes to thank John Annand and Brad Sawatzky for their substantial and essential contributions during the earlier project stages related to proposal, planning, reviews and early preparations
- Focusing on updates today
- GEn-RP = E12-17-004 (PAC45)
- KLL = E12-20-008 (PAC48)

G_{En} in absence of a free neutron target

No free neutron target \rightarrow elastic and quasi-elastic scattering Nuclear corrections (FSI, MEC, ...)

Smallness of G_E has not allowed L-T sep. of d(e,e'n) or d(e,e')–d(e,e'p)

G_{Fn} in absence of a free neutron target

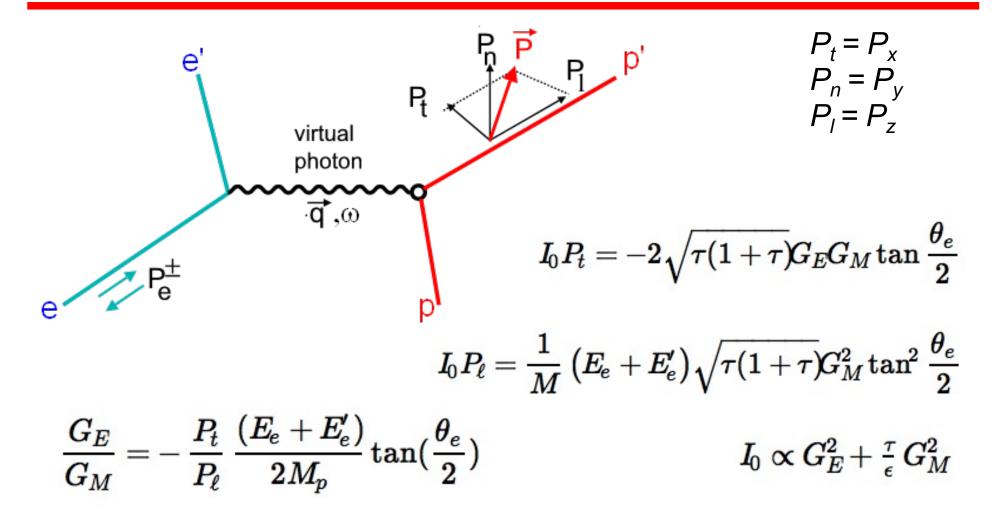
No free neutron target → elastic and quasi-elastic scattering

Nuclear corrections (FSI, MEC, ...)

Smallness of Gn has not allowed L-T sep. of d(e,e'n) or d(e,e')-d(e,e'p) SBS / nTPE

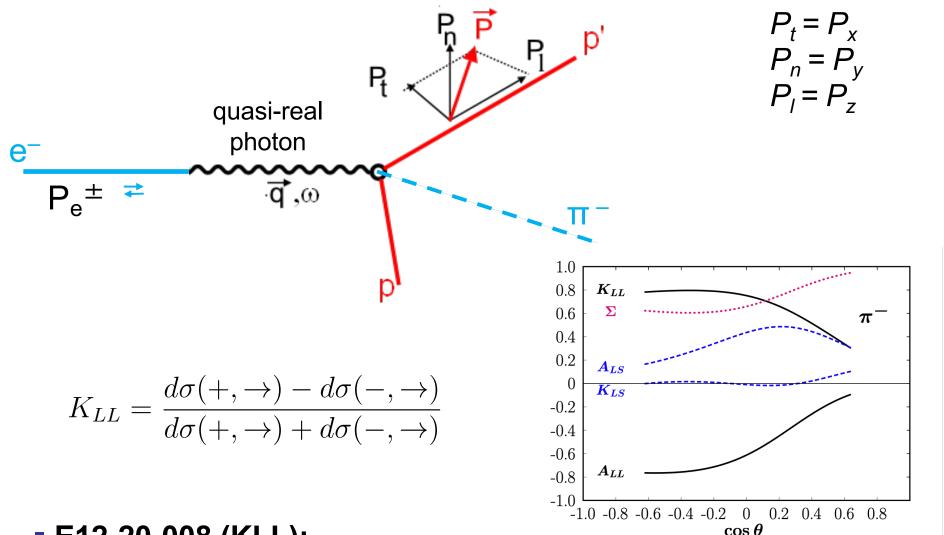
³He(e,e'n) quasielastic **Polarized Helium-3 G**ⁿ_F**G**ⁿ_M interference MAMI A3, A1, Hall A

SBS / GEn-II


²H(e,e'n) quasielastic **Vector-polarized deuterium G**ⁿ_E**G**ⁿ_M interference Nikhef, Bates/BLAST, Hall C G_Q from A+ T_{20} / 2 H(e,e'd) Gⁿ_EG^p_E interference Schiavilla+Sick

²H(e,e'd) elastic, A(Q²) **G**ⁿ_F**G**^p_F interference Galster, Platchkov, ...

²H(e,e'n) quasielastic **Neutron recoil polarization G**ⁿ_E**G**ⁿ_M interference Bates, MAMI A3, A1, Hall C


SBS / GEn-RP

Recoil polarization technique for G_E/G_M

- E12-17-004 (GEn-RP): Quasielastic ²H(e,e'n)p
- Dipole field for spin precession of P_I and P_n (P_t ~unaffected)
- Applicable to protons and neutrons

Recoil polarization technique for K_{LL}

E12-20-008 (KLL):

Wide-angle pion photoproduction on the neutron, ${}^{2}H(\overline{\gamma},\pi^{-}\overline{p})p$

- Spin correlation between polarized photon and recoil proton
- Large asymmetry expected, motivated by Twist-3 (Kroll)

Experimental technique of GEn-RP (SBS)

■ E12-17-004 will measure GEn/GMn using two recoil pol. techniques at Q² = ~4.4 (GeV/c)²

Detector components also used in:
 Wide-angle Charged Photoproduction (KLL)
 SBS Inline GEM stack + Steel analyzer

"GMn" beam, beamline, target, BB

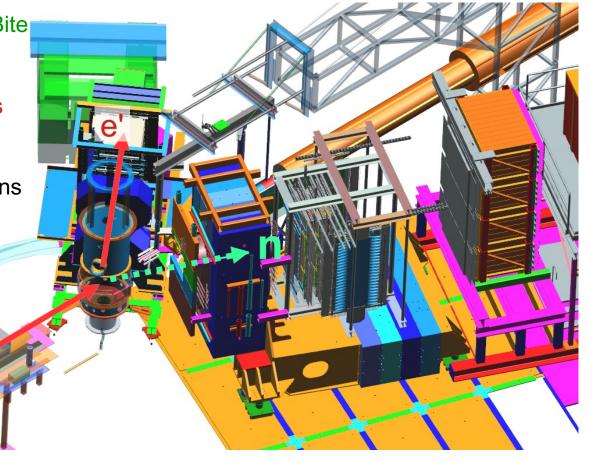
Beam: $\sim 4.3 \text{ GeV}$, $\sim 30 \mu\text{A}$, $P_b = \sim 80\%$

Target: 15 cm LD₂ (unpolarized)

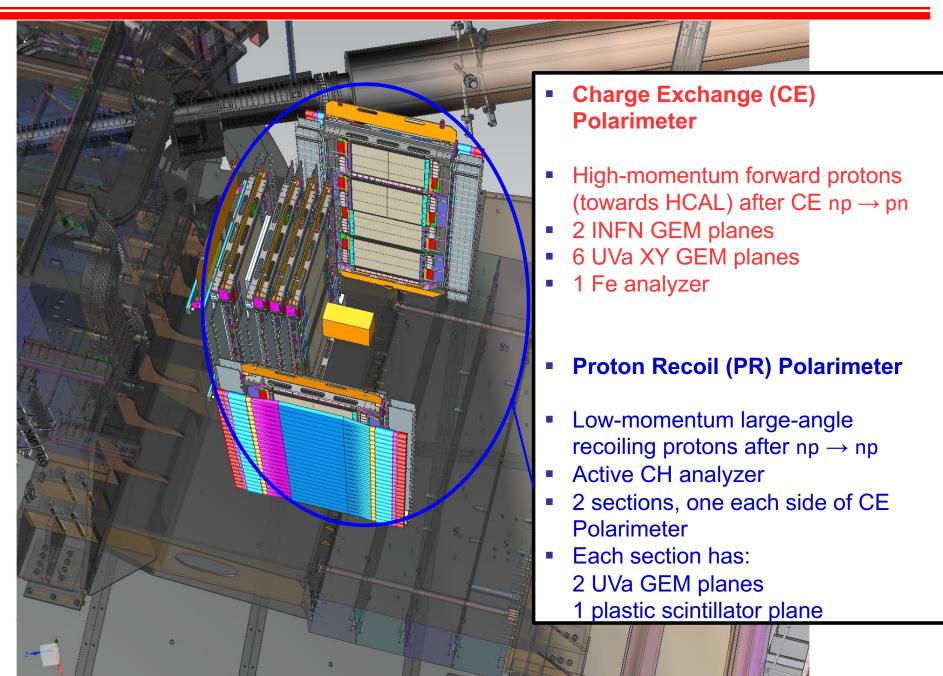
6% Cu radiator (KLL)

 Scattered electron measured in BigBite (π- in case of KLL)

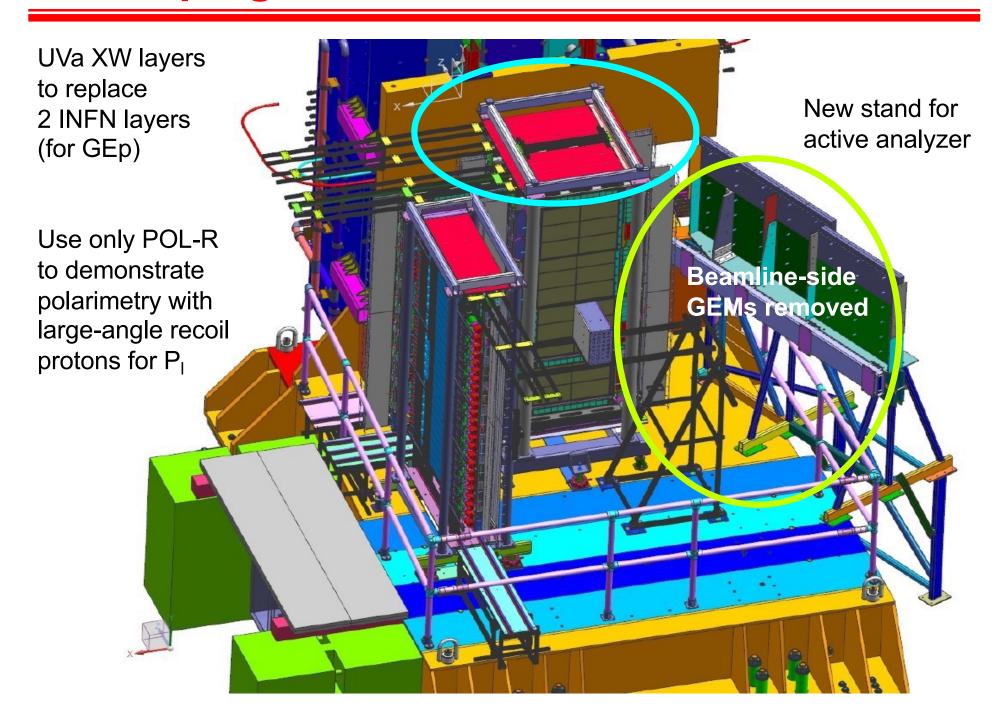
 Charge-exchange analyzing process np → pn channel (primary goal) Steel analyzer (passive) GEM tracking + HCAL forward protons

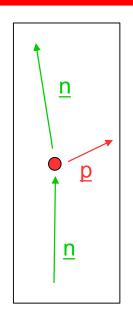

Elastic analyzing process
 np → np channel (secondary goal)

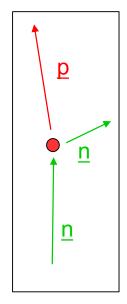
Plastic analyzer (active)
Large-angle recoil protons


→ Side detectors (GEM + hodoscope)

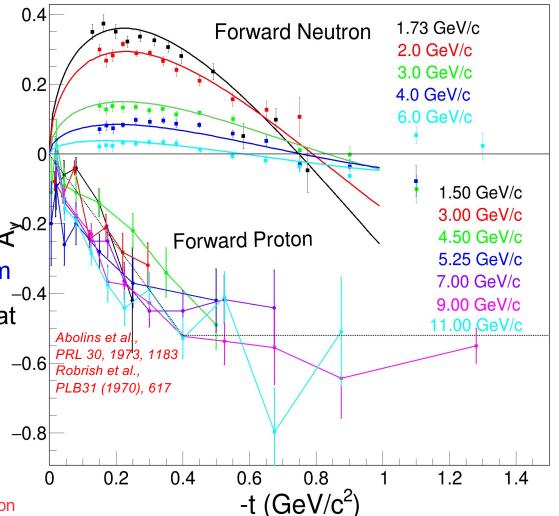
Forward neutron


 \rightarrow HCAL


SBS Neutron Polarimeter (orig. proposed)

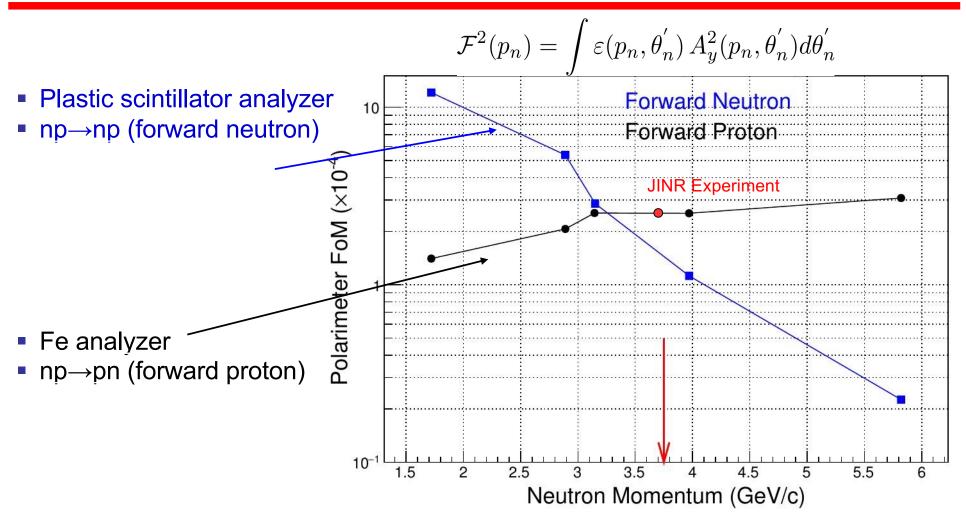


Descoping of beamline-side RP arm


Analyzing power for elastic n-p scattering

Diebold et al., PRL 35,(1975),632 Fits: Ladygin JINR E13-99-123 (1999)

Elastic n-p Polarisation


■ A_y for n-p (or p-n) falling rapidly
 with increasing neutron momentum

 A_y for charge-exchange n-p large at sufficiently large t (θ_p ~ few deg.)

 No apparent strong incident momentum dependence for charge-exchange A_v

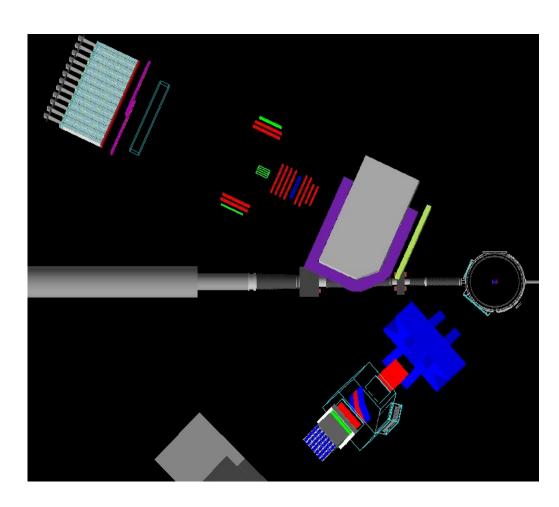

• $\sigma_{np \to np}$ factor ~10 higher than $\sigma_{np \to pn}$

Figure of merit: elastic vs. charge exchange

- A_y for np→pn on Cu: new 2016-17 measurement from JINR
 S.N. Basillev et al. EPJ A 56, 26 (2020)
- Calculate efficiency of polarimeter as function of θ_n by Monte Carlo
- A_y for free np \rightarrow np: JINR fit to p_n and θ_n dependence, scale A_y by 0.5 for ¹²C scattering (agrees with JINR 2016-17 data)

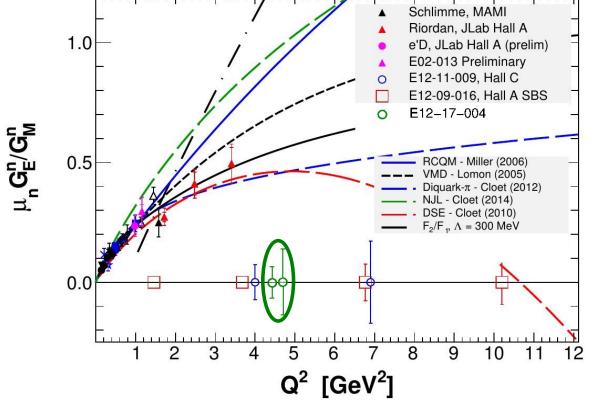
Geant4 Monte Carlo simulation

g4sbs framework: A. Puckett (U. Connecticut)

FOM study: D. Hamilton (U. of Glasgow)

Rate studies: W. Tireman (Northern Michigan)

- Realistic description of polarimeter components in g4sbs
- Included spin-dependent hadronic processes and precession
- Full quasi-elastic pseudo-data set simulated for expected luminosity
- Two-arm data analysis performed for both CE and PR polarimeter with realistic detector efficiencies and resolutions
- Analyzing power parametrizations based on Ladygin (x0.5) for PR and Dubna results for CE
- Extracted effective analyzing power (due to depolarization), overall efficiency, FOM and statistical uncertainty on polarization components and form factor ratio

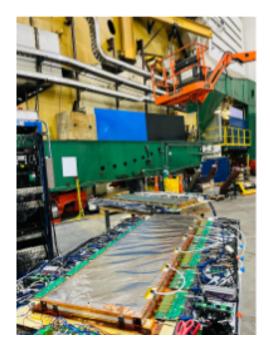

Projected form factor ratio uncertainty

$$\delta P = \sqrt{\frac{2}{N_{inc}\mathcal{F}^2}}$$

$$R = \mu_n G_E^n / G_M^n$$

$$\left(\frac{\delta R}{R}\right)^2 = \left(\frac{\delta P_x}{P_x}\right)^2 + \left(\frac{\delta P_z}{P_z}\right)^2$$

	E _{beam} (GeV)	Q ² (GeV/c) ²	p _n (GeV/c)	Rate (Hz)	Time (hours)	FOM x10 ⁻⁴	dP (absolute)	dR (absolute)
	4.4	4.5	3.15	48.8	120	2.6 (CE)	0.019	0.078
Schlimme, MAMI				0.8 (PR)	0.034	0.140		
	1.0	Riordan, JLab Hall A			3.4 (Total)	0.017	0.070	




- Estimates from g4sbs agree very well with proposal
- dR based on Galster G_{En} and Kelly G_{Mn} parametrizations
- Expect overall systematic error to be ~3.0%

GEM status in the Hall

HV upgrade for BB GEMs inside Hall, Dec 2023

4 UV layers before + 1 XY layer after GRINCH

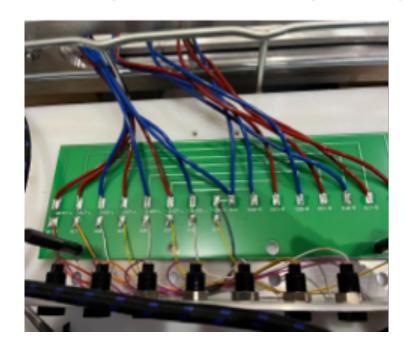
Some APVs fixed/swapped after GEN-II
UV layers: Directly supplying HV to each voltage step (CAEN A1515BTG)

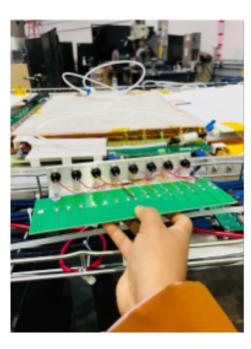
→ MAJOR EFFORT ACCOMPLISHED

XY layer: HV upgrade optional, still to be done For front-most layers, high-power A1515's available (A1515BTGHP-3mA)

GEM status in the Hall

Moving POL-R into Hall, Jan 2024




2 XY layers, continue testing / commissioning on Hall floor

GEM status in the Hall

HV upgrade for POL-R (2 XY layers) inside Hall, Jan 2024: CAEN A1515BTG

SBS inline GEMs (6 XY layers) to be pulled out for HV upgrades Jan 25 − Feb 15

→ MAJOR EFFORT, REQUIRES COORDINATION OF AVAIL. MANPOWER,

TECH SUPPORT, WORK ENVIRONMENT (ePAS etc ...)

2 INFN layers to be replaced with 2 new XW layers (1st is ready, 2nd potentially)

Low-voltage (LV) supply and distribution being replaced for SBS

Timeline

Summer/Fall 2023	Commissioning of POL-R (EEL) with cosmics		
	Commissioning of inline GEMs w/ beam during GEn-II		
Dec 2023	Upgraded HV supplies for BigBite GEMs, fixed APVs		
Jan-Feb 2024	Moved POL-R GEMs to Hall, cabled for HV tests		
	Pull out inline GEMs; upgrade HV supplies, fix APVs		
Feb-Mar 2024	Build SBS GEM bunker after SBS+HCAL in position		
	Installation of active analyzer and POL-R+hodoscopes		
	Cabling		
	Commissioning of XW layers at UVa		
Mar-April 2024	Installation XW layers (if in time – relevant for KLL)		
•	Final checkout		
April-May 2024	GEn-RP + KLL running		
	9—·····		
May-October 2024	Preparation of GEp		
•	•		

Manpower update

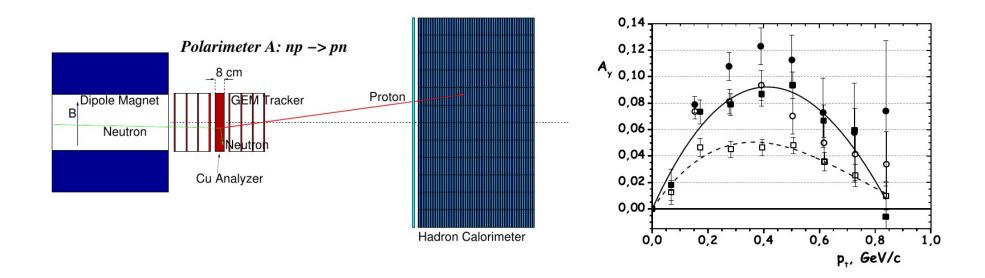
```
Glasgow: David Hamilton (+ students and postdoc):
      Oliver Jevons (Glasgow postdoc)
      Andrew Cheyne (PhD student on GEn-RP)
      Gary Penman (Glasgow grad, GEn-II)
N. Michigan: Will Tireman (+ UG students)
Hampton: M.K. (+ students and postdocs):
      Sarashowati (Saru) Dhital (PhD student on GEn-RP)
      Taiga Goke (visiting grad. student from Tohoku Univ., Jan 27-Mar 3)
      Ryan Richards (HU postdoc, 20%)
      other grad. students (Manju, Tanvi, Angel, Anne) + 1 UG (Krystal)
      HU postdoc (TBD, 80%)
JLAB: Holly Szumila-Vance, Bill Henry, B. Wojtsekhowski (+staff & tech. team)
UVA: Nilanga Liyanage (+scientists, postdocs, students, and tech)
      Huong Nguyen, Xinzhan Bai (research scientists), Asar Ahmed (postdoc)
      Vimukthi Gamage, Bhasitha Dharmasena (grad students)
      Jacob McMurtry (grad student), Minh Dao (UG), Eric Fernandez (tech)
UConn: Andrew Puckett (+ students and postdoc)
CNU: Ed Brash (+ UG students)
William & Mary: D. Armstrong, T. Averett (+ students and postdocs)
```

Responsibilities

List of Tasks to be Done and Personnel v2	
Updated: 8-December-2023	

<u>Software</u>	Action/Description	Responsible Personnel
DAQ Software	Update DAQ	Alex
Online Analysis	Update SBS Online for new GEMs and GEn-RP hodoscopes/Analyzers	Jiwan/David H. / Gary P.
Offline Analysis/50k/100k	Replay analysis updates for updated/new detectors	Jiwan/David H. / Gary P.
Slow Controls	Integrate new detectors into slow controls	Mark/Bill H.
HV controls	Add new detectors into HV controls	
Alarm Handler	Update alarm handler for new HV supplies	
Equipment		
Cabling	80 PMTs - HV and signals (32 analzyers (1 PMT) and 24 Hodoscopes (2 PMTS)	Bill H.
DAQ Electronics	FADCs and TDCs	Coordinate with Alex/David H.
SBS inline GEMs		Holly/Nilanga
SBS side GEMs		Holly/David H.
GEn-RP Detectors		Bill H.
Target		Meekins, Ed Brash
Moller		Donald
BBCal		Kate
Hcal		Jiwan
Beam Line		Bill H.
SBS/BB Magents	Settings: Angles, location, Power supplies	Bogdan/Ellen
Other Items		
RSAD	Update radiation budget pavel@jlab.org	Will Tireman
Safety documents	COO, ESAD, ERG, SAF110 Contact Mark Jones	David Hamilton
Run Plan development		Bogdan / David H
Shift Schedule and Policy	20 days, 120 shift persons + RCs	Michael Kohl
Physics liaison		Bill Henry

Personnel Able to Provide Assistance


Saru Dhital	
Andrew Cheyne	
Will Tireman	

Thank you!

Questions?

Backup

Recent analyzing power data from Dubna

- Dedicated analyzing power measurements with 3.75 GeV/c nucleons with a high-Z analyzer were published in 2020 (Basillev S.N. et al. EPJ A 56, 26).
- These measurements were done with the ALPOM2 set-up at Dubna using a similar polarimeter arrangement as GEn-RP (including a hadron calorimeter).
- The results confirm that the analyzing power for charge-exchange scattering is the same for low-Z and high-Z analyzers and that the use of a hadron calorimeter enhances A_v by a factor of 2.