

Polarized 3He Target Analysis for GEn-II

Hunter Presley

Hall A Collaboration Meeting 2024

"Experimental nuclear physicists"

"Make them look cool"

"The coolest nuclear physicists possible"

GEn-II Experimental Setup

- Extract ratio of GEn/GMn at high Q²
- Polarized electron beam
- Polarized 3He target
- Detect scattered electron and neutron in coincidence

Spin-Exchange-Optical Pumping (SEOP)

- Both Rb and K used for increased pumping efficiency
- 3He nuclei polarized through hyperfine interactions during collisions
- Convection used for fast mixing

SBS GEn-II Goal: Record Breaking Target Performance

- Polarization-weighted luminosity of previous 3He targets
- Projected performance of GEn-II targets
 - Target chamber length increased to 60 cm
 - Target chamber volume increased by factor of 2
 - □ Bigger cell -> higher current
 - Limits depolarization effects
 - Projected goal: 45% at 45uA

Collaboration Meeting 2024

NMR

- Cell in magnetic holding field
- Apply RF (91KHz) field and sweep holding field
- Measure voltage of coils placed near the cell to track polarization signal during sweep
- Yields signal in mV

- Use feedback system to find the frequency at which unpaired electrons in the alkali atoms resonate
- □ Flip the spins of the 3He
- □ Find new resonance frequency
- □ The difference in the frequency is proportional to the 3He polarization
- □ Yields percentage of polarization

Polarimetry

- □ NMR measurements taken every 3 hours
- □ Multiple EPR calibrations per cell
- Tasks
 - □ Calculate broad calibration constants for each cell %/mV
 - **Correct** for density fluctuations during calibrations
 - **Apply unique calibration** constant for each NMR
 - **Apply polarizations** for data-taking runs in GEn

Cell Information

	Cell Name	Average Polarization	Max Polarization	Number of Calibrations	Duration Installed
Kinematic 2	Hunter	40%	46.08%	23	20 days
Kinematic 3	Windmill	45%	49.80%	6	14 days
	Hunter	42%	46.32	11	24 days
Kinematic 4	Fringe	53%	55.92%	12	60 days
	Chicago	n/a	43.60%	6	12 days
	Donya	40%	44.49%	3	31 days
	Christin	40%	45.57%	7	20 days

Collaboration Meeting 2024

Task 1: Broad Calibrations

- Completed during the running of each cell
- Gives a generally accurate %/mV value to apply to NMR data in real time

Task 2: Correct Calibrations

- Correct for different temperatures using volumes and signal ratios
- After eliminating systematic fluctuations in calibrations, average

Task 3: Apply Unique Calibration

- **Take corrected averaged calibration constant**
- Use comparison of ratio during calibration and the ratio of each individual NMR during the run to adjust the averaged calibration
- Corrected for density fluctuations across multiple calibrations in task 2
- Task 3 corrects for density fluctuations between the calibrations and the production NMR sweeps

Summary and Future Steps

- GEn-II data taking is complete (10/2022-11/2023)
- GEn-II Polarimetry is well under way
- Preliminary results suggest target goal of **45% at 45uA** has been reached
- Delarization Interpolation (Task 4) in early stages of development

