New developments on GPDs from lattice QCD

Martha Constantinou

Temple University

Winter Hall A Collaboration Meeting

$$
\text { January } 16-17,2024
$$

Outline

Approaches to GPDs from lattice QCD

\star Recent results on Mellin moments for proton:
\Rightarrow Axial form factors
\Rightarrow E/M form factors
x-dependence of GPDs:
\Rightarrow leading-twist results
\Rightarrow subleasing-twist contributions
\Rightarrow new promising method

太 Summary - Outlook

Motivation in a nutshell

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

* Contain physical interpretation on mechanical properties
\star Mellin moments connected to e.g., E/M radii, axial mass, spin, mass, ...
\star GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Motivation in a nutshell

$1_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

* Contain physical interpretation on mechanical properties

太 Mellin moments connected to e.g., E/M radii, axial mass, spin, mass, ...
\star GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Accessing information on GPDs

* Mellin moments
(local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \overleftrightarrow{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

Accessing information on GPDs

\star Mellin moments
(local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

Matrix elements of non-local operators

 (quasi-GPDs, pseudo-GPDs, ...)$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Nonlocal operator with Wilson line

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

The advances of lattice QCD in the last years have been impressive \Rightarrow calculations at physical quark masses
\Rightarrow precision calculations with controlled systematics (discretization, volume, excited states,...)

The advances of lattice QCD in the last years have been impressive \Rightarrow calculations at physical quark masses
\Rightarrow precision calculations with controlled systematics (discretization, volume, excited states,...)

[Finkenrath, plenary talk, Lattice 2022]
Simulations for hadron structure and beyond
\star The advances of lattice QCD in the last years have been impressive \Rightarrow calculations at physical quark masses
\Rightarrow precision calculations with controlled systematics (discretization, volume, excited states,...)

[Finkenrath, plenary talk, Lattice 2022]
Simulations for hadron structure and beyond

The advances of lattice QCD in the last years have been impressive \Rightarrow calculations at physical quark masses
\Rightarrow precision calculations with controlled systematics (discretization, volume, excited states,...)

ETMC update

[Finkenrath, plenary talk, Lattice 2022]
Simulations for hadron structure and beyond

Ensemble	V / a^{4}	β	$a[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi} L$
cB211.072.64	$64^{3} \times 128$	1.778	$0.07957(13)$	$140.2(2)$	3.62
cC211.060.80	$80^{3} \times 160$	1.836	$0.06821(13)$	$136.7(2)$	3.78
cD211.054.96	$96^{3} \times 192$	1.900	$0.05692(12)$	$140.8(2)$	3.90

M. Constantinou, Hall A Winter Meeting 2024

Nucleon Form Factors

M. Constantinou, Hall A Winter Meeting 2024

Axial form factors

* Matrix elements (including disconnected)

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} G_{A}\left(Q^{2}\right)-\frac{Q_{\mu}}{2 m_{N}} G_{P}\left(Q^{2}\right)\right] \gamma_{5} u_{N}(p, s)
$$

$$
G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{4 m_{N}^{2}} G_{P}\left(Q^{2}\right)=\frac{m_{q}}{m_{N}} G_{5}\left(Q^{2}\right)
$$

Study of systematic uncertainties

- excited states ($T_{\text {sink }}$ up to $\sim 1.6 \mathrm{fm}$)
- Q^{2} parametrization (dipole, z-expansion)

$$
G\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}\left(Q^{2}\right)
$$

- continuum limit

Axial form factors

* Matrix elements (including disconnected) $\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} G_{A}\left(Q^{2}\right)-\frac{Q_{\mu}}{2 m_{N}} G_{P}\left(Q^{2}\right)\right] \gamma_{5}$ $G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{4 m_{N}^{2}} G_{P}\left(Q^{2}\right)=\frac{m_{q}}{m_{N}} G_{5}\left(Q^{2}\right)$

Study of systematic uncertainties

- excited states ($T_{\text {sink }}$ up to $\sim 1.6 \mathrm{fm}$)
- Q^{2} parametrization (dipole, z-expansion)

$$
G\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}\left(Q^{2}\right)
$$

- continuum limit

Axial form factors

太 Matrix elements (including disconnected) $\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} G_{A}\left(Q^{2}\right)-\frac{Q_{\mu}}{2 m_{N}} G_{P}\left(Q^{2}\right)\right] \gamma_{5}$ $G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{4 m_{N}^{2}} G_{P}\left(Q^{2}\right)=\frac{m_{q}}{m_{N}} G_{5}\left(Q^{2}\right)$

Study of systematic uncertainties

- excited states ($T_{\text {sink }}$ up to $\sim 1.6 \mathrm{fm}$)
- Q^{2} parametrization (dipole, z-expansion)

$$
G\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}\left(Q^{2}\right)
$$

- continuum limit

Pion pole dominance supported by lattice data of Gp

$$
G_{P}\left(Q^{2}\right)=\left.\frac{4 m_{N}^{2}}{Q^{2}+m_{\pi}^{2}} G_{A}\left(Q^{2}\right)\right|_{Q^{2} \rightarrow-m_{\pi}^{2}}
$$

Axial form factors

* Comparison with other studies

\star Results closer to the new Minerva antineutrino-hydrogen data
[T. Cai et al., Nature 614, 48 (2023)]

Axial form factors

* Comparison with other studies

\star Results closer to the new Minerva antineutrino-hydrogen data
[T. Cai et al., Nature 614, 48 (2023)]

Axial radius

- dipole fit

$$
G\left(Q^{2}\right)=\frac{g}{\left(1+\frac{Q^{2}}{m^{2}}\right)^{2}} \quad r^{2}=\frac{12}{m^{2}}
$$

- z-expansion

$$
G\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}\left(Q^{2}\right) \quad r^{2}=-\frac{3 a_{1}}{2 a_{0} t_{\mathrm{cut}}}
$$

E/M form factors

Ensemble	V / a^{4}	β	$a[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi} L$
cB211.072.64	$64^{3} \times 128$	1.778	$0.07957(13)$	$140.2(2)$	3.62
cC211.060.80	$80^{3} \times 160$	1.836	$0.06821(13)$	$136.7(2)$	3.78
cD211.054.96	$96^{3} \times 192$	1.900	$0.05692(12)$	$140.8(2)$	3.90

$$
\begin{array}{r}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| j_{\mu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}\left(q^{2}\right)\right] u_{N}(p, s) \\
G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 m_{N}^{2}} F_{2}\left(q^{2}\right) \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{array}
$$

Results include disconnected contributions

* High accuracy results may be valuable for experimental data

E/M form factors

Disconnected contributions non-negligible

E/M form factors

Disconnected contributions non-negligible

[(ETMC) Alexandrou et al., PRD 100 (2019) 1, 014509]

E/M form factors

$\mathrm{CSSM} / \mathrm{QCDSF}$

[(Mainz) Djukanovic et al., arXiv:2309.07491]

E/M form factors

$\begin{aligned} & \text { ETMC }_{\mathrm{F}}=2+1+1, \mathrm{Lm}_{\pi}=3.6 \\ & \text { ETMC } \mathrm{N}_{\mathrm{F}}=2, \mathrm{Lm}_{\pi}=4 \end{aligned}$	ETMC '17	14 LHPC '14
$\begin{array}{llll} 0.3 & -0.2 & -0.1 & 0.0 \\ & \left\langle\mathrm{r}_{\mathrm{E}}^{2}\right\rangle^{\mathrm{n}} & {\left[\mathrm{fm}^{2}\right]} \end{array}$	$\begin{gathered} 0.60 .70 .80 .9-2 \\ \sqrt{\left\langle\mathrm{r}_{\mathrm{M}}^{2}\right\rangle^{n}}[\mathrm{fm}] \end{gathered}$	$\begin{array}{ccc} 2 & -1.9{ }^{2}-1.6 \\ \mu_{\mathrm{n}} \end{array}$

Synergy with experimental data

[Atac et al., Nature Comm. 12, 1759 (2021)]

\star Coverage in regions where data is sparse

[(Mainz) Djukanovic et al., arXiv:2309.07491]

[H. Atac et al., Eur. Phys. J. A 57, 65 (2021)]

E/M form factors

* Towards the continuum limit
[(ETMC) C. Alexandrou et al., PoS(LATTICE2022)114 (2023)]

Results are promising
Next step: extraction of radii (coming soon)

GPDs

Through non-local matrix elements of fast-moving hadrons

M. Constantinou, Hall A Winter Meeting 2024

Hadron structure at core of nuclear physics

Tomographic imaging of proton has central role in the science program of EIC GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Hadron structure at core of nuclear physics

Tomographic imaging of proton has central role in the science program of EIC GPDs, FFs, GFFs, TMDs, ... [R. Abdul Khalek et al., EIC Yellow Report 2021, arXiv:2103.05419]

"The SoLID Collaboration should investigate the feasibility of carrying out a competitive GPD program. Such a program would seem particularly well suited to their open geometry and high luminosity."

Director's Review 2015

Form factors

Form factors

- Simulations at physical point available by multiple groups
- Precision data era (control of systematic uncertainties)

Form factors

- Simulations at physical point available by multiple groups
- Precision data era (control of systematic uncertainties)

Generalized form factors

- Lesser studied compared to FFs at physical point
- Decay of signal-to-noise ratio

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Accessing -t dependence:
hadronic matrix elements

quasi distribution 5 x-dependence approach

Twist-classification of PDFs, GPDs, TMDs

$\begin{aligned} & \text { * Twist: specifies the order in } 1 / Q \text { at which the function } \\ & \text { enters factorization formula for a given observable }\end{aligned} \quad f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$

Twist-2 $\left(f_{i}^{(0)}\right)$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

Twist-classification of PDFs, GPDs, TMDs

$\begin{aligned} & \text { * Twist: specifies the order in } 1 / Q \text { at which the function } \\ & \text { enters factorization formula for a given observable }\end{aligned} \quad f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

	r^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$		
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

* Twist-2: probabilistic densities - a wealth of information exists (mostly on PDFs)
* Twist-3: poorly known, but very important:
- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_{2})
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

Twist-classification of PDFs, GPDs, TMDs

$\begin{aligned} & \text { * Twist: specifies the order in } 1 / Q \text { at which the function } \\ & \text { enters factorization formula for a given observable }\end{aligned} \quad f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$

Twist-2 $\left(f_{i}^{(0)}\right)$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$		
L		$\frac{\widetilde{G}_{1},}{\widetilde{G}_{3}}, \widetilde{G}_{2}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

太 Twist-2: probabilistic densities - a wealth of information exists (mostly on PDFs)
太 Twist-3: poorly known, but very important:

- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_{2})
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

While twist-3 $f_{i}^{(1)}$ share some similarities with twist-2 $f_{i}^{(0)}$ in their extraction, there are several challenges both experimentally and theoretically

Twist-2 GPDs

* γ^{+}inspired parametrization (symmetric frame)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Twist-2 GPDs

* γ^{+}inspired parametrization (symmetric frame)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

* $\mathrm{Nf}=2+1+1$ twisted mass fermions \& clover term (pion mass 260 MeV)

[C. Alexandrou et al., PRL 125, 262001 (2020)]

Twist-2 GPDs

* γ^{+}inspired parametrization (symmetric frame)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

* $\mathrm{Nf}=2+1+1$ twisted mass fermions \& clover term (pion mass 260 MeV)

power counting analysis of GPDs $(x \rightarrow 1)$
[F. Yuan, Phys.Rev. D69 (2004) 051501, hep-ph/0311288]
$\downarrow t$-dependence vanishes at large- x
$\downarrow H(x, 0)$ asymptotically equal to $f_{1}(x)$

Twist-2 GPDs

太 γ^{+}inspired parametrization (symmetric frame)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

* $\mathrm{Nf}=2+1+1$ twisted mass fermions \& clover term (pion mass 260 MeV)

[C. Alexandrou et al., PRL 125, 262001 (2020)]

[F. Yuan, Phys.Rev. D69 (2004) 051501, hep-ph/0311288]
$\downarrow t$-dependence vanishes at large- x
$\checkmark H(x, 0)$ asymptotically equal to $f_{1}(x)$

Twist-3 GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\oplus,{ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\oplus,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\oplus,{ }^{1}$
Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

\star Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

\star Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

Theoretical setup

Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

\star Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

Twist-3 contributions to
helicity GPDs: $\Gamma=\gamma^{j} \gamma_{5}, j=1,2$

Theoretical setup

Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.
$$

$$
+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right)
$$

$$
\left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Twist-3 contributions to
helicity GPDs: $\Gamma=\gamma^{j} \gamma_{5}, j=1,2$
[S. Bhattacharya et al., PRD 102 (2020) 11] (Editors Highlight)

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

\star Calculation of connected diagram

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Symmetric frame
computationally
expensive

(1)
Suppressing gauge noise and reliably extracting the ground state comes at a significant computational cost

Consistency Checks

Sum Rules (generalization of Burkhardt-Cottingham)

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

Sum Rules (generalization of Efremov-Leader-Teryaev)

[A. Efremov, O. Teryaev , E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

$$
\int_{-1}^{1} d x x \widetilde{G}_{3}(x, 0, t)=\frac{\xi}{4} G_{E} \quad \int_{-1}^{1} d x x \widetilde{G}_{4}(x, 0, t)=\frac{1}{4} G_{E}(t)
$$

Lattice Results - quasi-GPDs

z / a
z / a

Lattice Results - quasi-GPDs

Indeed, numerically found to be zero within uncertainties at $\xi=0$
z / a

Reconstruction of x-dependence \& matching

quasi-GPDs transformed to momentum space using Backus Gilbert
[G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)]

Matching formalism to 1 loop accuracy level

$$
F_{X}^{\mathrm{M} \overline{\mathrm{MS}}}\left(x, t, P_{3}, \mu\right)=\int_{-1}^{1} \frac{d y}{|y|} C_{\gamma_{j} \gamma_{5}}^{\mathrm{M} \overline{\mathrm{MS}}, \overline{\mathrm{MS}}}\left(\frac{x}{y}, \frac{\mu}{y P_{3}}\right) G_{X}^{\overline{\mathrm{MS}}}(y, t, \mu)+\mathcal{O}\left(\frac{m^{2}}{P_{3}^{2}}, \frac{t}{P_{3}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{3}^{2}}\right)
$$

Operator dependent kernel
One-loop matching for the twist-3 parton distribution $g_{\boldsymbol{T}}(\boldsymbol{x})$

Matching does not consider mixing with $\mathrm{q}-\mathrm{g}-\mathrm{q}$ correlators [V. Braun et al., JHEP 05 (2021) 086]

Lattice Results - light-cone GPDs

M. Constantinou, Hall A Winter Meeting 2024

Lattice Results - light-cone GPDs

Lattice Results - light-cone GPDs

Negative areas in \widetilde{G}_{2}
theoretically anticipated:

$$
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness
Glimpse into \widetilde{E}-GPD through twist-3 :

$$
P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness
Glimpse into \widetilde{E}-GPD through twist-3 :

$$
P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)
$$

Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness

* Glimpse into \widetilde{E}-GPD through twist-3 : $\quad P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{\mathscr{E}}}\left(x, \xi, t ; P^{3}\right)$

* Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

$\star \widetilde{G}_{4}$ very small; no theoretical argument to be zero

$$
\int_{-1}^{1} d x x \widetilde{G}_{4}(x, \xi, t)=\frac{1}{4} G_{E}
$$

Extension to twist-3 tensor GPDs

* Parametrization [Meissner etal., HHEP O8 (2009) 056]

$$
F^{\left[\sigma^{+-} \gamma_{5}\right]}=\bar{u}\left(p^{\prime}\right)\left(\gamma^{+} \gamma_{5} \widetilde{H}_{2}^{\prime}+\frac{P^{+} \gamma_{5}}{M} \widetilde{E}_{2}^{\prime}\right) u(p)
$$

New parametrization of GPDs

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya©, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee $\odot^{1},{ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

Theoretical setup

M. Constantinou, Hall A Winter Meeting 2024

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \lambda^{1 / \prime}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \quad \lambda^{1 /}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

Goals

Extraction of standard GPDs using A_{i} obtained from any frame quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}} \gamma^{1 /}+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

Goals

Extraction of standard GPDs using A_{i} obtained from any frame quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone
\Rightarrow Proof-of-concept calculation $(\xi=0)$:

- symmetric frame: $\quad \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, \quad \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} \quad-t^{s}=\vec{Q}^{2}=0.69 \mathrm{GeV}^{2}$
- asymmetric frame: $\quad \vec{p}_{f}^{a}=\vec{P}, \quad \vec{p}_{i}^{a}=\vec{P}-\vec{Q} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}=0.65 \mathrm{GeV}^{2}$

Comparison of A_{i} in two frames

Unpolarized GPDs

A_{1}, A_{5} dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}

* A_{3}, A_{4}, A_{8} zero at $\xi=0$
$\star A_{2}, A_{6}, A_{7}$ suppressed (at least for this kinematic setup and $\xi=0$)
M. Constantinou, Hall A Winter Meeting 2024

Comparison of A_{i} in two frames

Unpolarized GPDs

$$
\begin{array}{cc}
\phi & A_{1}^{s} \\
\phi & A_{1}^{a} \\
\phi & A_{5}^{s} \\
\phi & A_{5}^{a}
\end{array}
$$

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

M. Constantinou, Hall A Winter Meeting 2024

Light-cone GPDs

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

QUARK-GLUON TOMOGRAPHY
 COLLABORATION

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

QGT-related Publications

1. "Gluon helicity in the nucleon from lattice QCD and machine learning", Khan, Liu, Sabbir Sufian, Physical Review D, Accepted, 2023.
2. "Moments of proton GPDs from the OPE of nonlocal quark bilinears up to NNLO", Bhattacharya Cichy, Constantinou, Gao, Metz, Miller, Mukherjee, Petreczky, Steffens, Zhao, Physical Review D, DOI: 10.1103/PhysRevD.108.014507.
3. "Generalized parton distributions through universal moment parameterization: non-zero skewness case", Guo, Ji, Santiago, Shiells, Yang, Journal of High Energy Physics, DOI: 10.1007/JHEP05(2023)150.
4. "Hadronic structure on the light-front VI. Generalized parton distributions of unpolarized hadrons", Shuryak, Zahed, Physical Review D, DOI: 10.1103/ PhysRevD.107.094005.
5. "Chiral-even axial twist-3 GPDs of the proton from lattice QCD", Bhattacharya, Cichy, Constantinou, Dodson, Metz, Scapellato, Fernanda Steffens, Physical Review D, DOI: 10.1103/PhysRevD.108.054501.
6. "Shedding light on shadow generalized parton distributions", Moffat, Freese, Cloët, Donohoe, Gamberg, Melnitchouk, Metz, Prokudin, Sato, Physical Review D, DOI: 10.1103/PhysRevD.108.036027.
7. "Colloquium: Gravitational Form Factors of the Proton", Burkert, Elouadrhiri, Girod, Lorcé, Schweitzer, Shanahan, Physical Review D, Under Review.
8. "Synchronization effects on rest frame energy and momentum densities in the proton", Freese, Miller, eprint: 2307.11165.
9. "Proton's gluon GPDs at large skewness and gravitational form factors from near threshold heavy quarkonium photo-production", Guo, Ji, Yuan, e-Print: 2308.13006.
10. "Parton Distributions from Boosted Fields in the Coulomb Gauge", Gao, Liu, Zhao, e-Print: 2306.14960.
11. "Exactly solvable models of nonlinear extensions of the Schrödinger equation", Dodge, Schweitzer, e-Print: 2304.01183.
12. "Role of strange quarks in the D-term and cosmological constant term of the proton", Won, Kim, Kim, e-Print: 2307.00740.
13. "Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays", Ma, Feng, Gorchtein, Jin, Liu, Seng, Wang, Zhang, e-Print: 2308.16755.

Summary

* Impressive progress in the calculation of Mellin moments of GPDs
* Novel methods to access x dependence complementary to Mellin moments
* New methods applicable beyond leading twist.

Several improvements needed, e.g., mixing with quark-gluon-quark correlator
\star New proposal for Lorentz invariant decomposition has great advantages:

- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
\star Synergy with phenomenology is an exciting prospect!
QGT Collaboration will be instrumental in such effort
M. Constantinou, Hall A Winter Meeting 2024

Summary

* Impressive progress in the calculation of Mellin moments of GPDs
* Novel methods to access x dependence complementary to Mellin moments
\star New methods applicable beyond leading twist. Several improvements needed, e.g., mixing with quark-gluon-quark correlator
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
* Synergy with phenomenology is an exciting prospect! QGT Collaboration will be instrumental in such effort

Ascr Leadership

Computing Challenge

Miscellaneous

M. Constantinou, Hall A Winter Meeting 2024

Transversity GPDs

Standard parametrization

Transversity GPDs

Lorentz covariant parametrization

Standard parametrization $F_{\lambda, \lambda^{[i \mu \nu}}^{\left[\nu^{\nu]} \gamma_{5]}=P^{[\mu} z^{\nu]} \gamma_{5} A_{1}+\frac{P^{[\mu} \Delta^{\nu]}}{M^{2}} \gamma_{5} A_{2}+z^{[\mu} \Delta^{\nu]} \gamma_{5} A_{3}+\gamma^{[\mu}\left(\frac{P^{\nu]}}{M} A_{4}+M z^{\nu]} A_{5}+\frac{\Delta^{\nu]}}{M} A_{6}\right) \gamma_{5}, ~\right.}$

$$
\begin{aligned}
& +M \not \not \gamma_{5}\left(P^{[\mu} z^{\nu]} A_{7}+\frac{P^{[\mu} \Delta^{\nu]}}{M^{2}} A_{8}+z^{[\mu} \Delta^{\nu]} A_{9}\right)+i \sigma^{\mu \nu} \gamma_{5} A_{10} \\
& +i \epsilon^{\mu \nu P z} A_{11}+i \epsilon^{\mu \nu z \Delta} A_{12} \\
& \Pi_{01}^{s}\left(\Gamma_{0}\right)=K\left(-A_{T 4} \frac{E P_{3} \Delta_{2}}{4 m^{3}}+A_{T 10} \frac{P_{3} \Delta_{2}}{4 m^{2}}+A_{T 11} \frac{\left(P_{3}^{2}+E(E+m)\right) z \Delta_{2}}{16 m^{2}}+A_{T 12} \frac{\left(P_{3}^{2}-E(E+m)\right) z \Delta_{2}}{8 m^{2}}\right) \\
& \Pi_{01}^{s}\left(\Gamma_{1}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1}^{2}}{4 m^{4}}+A_{T 4} \frac{E\left(\Delta_{2}^{2}+4 m(E+m)\right)}{8 m^{3}}+A_{T 1} \frac{\left(4(E+m)^{2}+4 P_{3}^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}\right)}{16 m^{2}}\right. \\
& \left.\quad \quad+A_{T 11} \frac{P_{3}\left(8 E(E+m)-\Delta_{2}^{2}\right) z}{32 m^{2}}-A_{T 12} \frac{P_{3} \Delta_{2}^{z} z}{16 m^{2}}\right)
\end{aligned}
$$

$$
\Pi_{01}^{s}\left(\Gamma_{2}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1} \Delta_{2}}{4 m^{4}}-A_{T 4} \frac{E \Delta_{1} \Delta_{2}}{8 m^{3}}+A_{T 1} \frac{\Delta_{1} \Delta_{2}}{8 m^{2}}+A_{T 11} \frac{P_{3} \Delta_{1} z \Delta_{2}}{32 m^{2}}+A_{T 12} \frac{P_{3} \Delta_{z} z \Delta_{2}}{16 m^{2}}\right)
$$

$$
\Pi_{01}^{s}\left(\Gamma_{3}\right)=i K\left(-A_{T 8} \frac{(E+m) P_{3} \Delta_{1}}{2 m^{3}}-A_{T 8} \frac{(E+m) \Delta_{1} z E^{2}}{2 m^{3}}-A_{T 12} \frac{(E+m) \Delta_{1} z}{8 m}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{0}\right)=K\left(A_{T 4} \frac{E P_{3} \Delta_{1}}{4 m^{3}}-A_{T 10} P_{3} \Delta_{1}-A_{T 11} \frac{\left(P_{3}^{2}+E(E+m)\right) z \Delta_{1}}{16 m^{2}}+A_{T 12} \frac{\left(E(E+m)-P_{3}^{2}\right) z \Delta_{1}}{8 m^{2}}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{1}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1} \Delta_{2}}{4 m^{4}}-A_{T 4} \frac{E \Delta_{1} \Delta_{2}}{8 m^{3}}+A_{T 10} \frac{\Delta_{1} \Delta_{2}}{8 m^{2}}+A_{T 11} \frac{P_{3} \Delta_{1} z \Delta_{2}}{32 m^{2}}+A_{T 12} \frac{P_{3} \Delta_{1} z \Delta_{2}}{16 m^{2}}\right)
$$

$$
\Pi_{0_{2}}^{s}\left(\Gamma_{2}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{2}^{2}}{4 m^{4}}+A_{T 4} \frac{E\left(\Delta_{1}^{2}+4 m(E+m)\right)}{8 m^{3}}+A_{T 1} \frac{\left(4 E(E+m)-\Delta_{1}^{2}\right)}{8 m^{2}}\right.
$$

$$
\left.+A_{T 11} \frac{P_{3}\left(8 E(E+m)-\Delta_{1}^{2}\right) z}{32 m^{2}}-A_{T 12} \frac{P_{3} z \Delta_{1}^{2}}{16 m^{2}}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{3}\right)=i K\left(-A_{T 6} \frac{(E+m) P_{3} \Delta_{2}}{2 m^{3}}-A_{T 8} \frac{(E+m) \Delta_{2} z E^{2}}{2 m^{3}}-A_{T 12} \frac{(E+m) \Delta_{2} z}{8 m}\right)
$$

Transversity GPDs

Lorentz covariant parametrization

Standard parametrization $F_{\lambda, \lambda^{[i \nu}}{ }^{\left.i \mu \gamma_{5]}\right]}=P^{[\mu} z^{\nu]} \gamma_{5} A_{1}+\frac{P^{[\mu} \Delta^{\nu]}}{M^{2}} \gamma_{5} A_{2}+z^{[\mu} \Delta^{\nu]} \gamma_{5} A_{3}+\gamma^{[\mu}\left(\frac{P^{\nu]}}{M} A_{4}+M z^{\nu]} A_{5}+\frac{\Delta^{\nu]}}{M} A_{6}\right) \gamma_{5}$

$$
\begin{aligned}
& +M \not \approx \gamma_{5}\left(P^{[\mu} z^{\nu]} A_{7}+\frac{P^{[\mu} \Delta^{\nu]}}{M^{2}} A_{8}+z^{[\mu} \Delta^{\nu]} A_{9}\right)+i \sigma^{\mu \nu} \gamma_{5} A_{10} \\
& +i \epsilon^{\mu \nu P z} A_{11}+i \epsilon^{\mu \nu z \Delta} A_{12}
\end{aligned}
$$

$$
\Pi_{01}^{s}\left(\Gamma_{0}\right)=K\left(-A_{T 4} \frac{E P_{3} \Delta_{2}}{4 m^{3}}+A_{T 10} \frac{P_{3} \Delta_{2}}{4 m^{2}}+A_{T 11} \frac{\left(P_{3}^{2}+E(E+m)\right) z \Delta_{2}}{16 m^{2}}+A_{T 12} \frac{\left(P_{3}^{2}-E(E+m)\right) z \Delta_{2}}{8 m^{2}}\right)
$$

$$
\Pi_{01}^{s}\left(\Gamma_{1}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1}^{2}}{4 m^{4}}+A_{T 4} \frac{E\left(\Delta_{2}^{2}+4 m(E+m)\right)}{8 m^{3}}+A_{T 10} \frac{\left(4(E+m)^{2}+4 P_{3}^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}\right)}{16 m^{2}}\right.
$$

$$
\left.+A_{T 11} \frac{P_{3}\left(8 E(E+m)-\Delta_{2}^{2}\right) z}{32 m^{2}}-A_{T 12} \frac{P_{3} \Delta_{2}^{2} z}{16 m^{2}}\right)
$$

$$
\Pi_{01}^{s}\left(\Gamma_{2}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1} \Delta_{2}}{4 m^{4}}-A_{T 4} \frac{E \Delta_{1} \Delta_{2}}{8 m^{3}}+A_{T 10} \frac{\Delta_{1} \Delta_{2}}{8 m^{2}}+A_{T 11} \frac{P_{3} \Delta_{1} z \Delta_{2}}{32 m^{2}}+A_{T 12} \frac{P_{3} \Delta_{1} z \Delta_{2}}{16 m^{2}}\right)
$$

$$
\Pi_{01}^{s}\left(\Gamma_{3}\right)=i K\left(-A_{T 6} \frac{(E+m) P_{3} \Delta_{1}}{2 m^{3}}-A_{T 8} \frac{(E+m) \Delta_{1} z E^{2}}{2 m^{3}}-A_{T 12} \frac{(E+m) \Delta_{1} z}{8 m}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{0}\right)=K\left(A_{T 4} \frac{E P_{3} \Delta_{1}}{4 m^{3}}-A_{T 10} \frac{P_{3} \Delta_{1}}{4 m^{2}}-A_{T 11} \frac{\left(P_{3}^{2}+E(E+m)\right) z \Delta_{1}}{16 m^{2}}+A_{T 12} \frac{\left(E(E+m)-P_{3}^{2}\right) z \Delta_{1}}{8 m^{2}}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{1}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{1} \Delta_{2}}{4 m^{4}}-A_{T 4} \frac{E \Delta_{1} \Delta_{2}}{8 m^{3}}+A_{T 10} \frac{\Delta_{1} \Delta_{2}}{8 m^{2}}+A_{T 11} \frac{P_{3} \Delta_{1} z \Delta_{2}}{32 m^{2}}+A_{T 12} \frac{P_{3} \Delta_{1} z \Delta_{2}}{16 m^{2}}\right)
$$

$$
\Pi_{02}^{s}\left(\Gamma_{2}\right)=i K\left(A_{T 2} \frac{E(E+m) \Delta_{2}^{2}}{4 m^{4}}+A_{T 4} \frac{E\left(\Delta_{1}^{2}+4 m(E+m)\right)}{8 m^{3}}+A_{T 10} \frac{\left(4 E(E+m)-\Delta_{1}^{2}\right)}{8 m^{2}}\right.
$$

$$
\left.+A_{T 11} \frac{P_{3}\left(8 E(E+m)-\Delta_{1}^{2}\right) z}{32 m^{2}}-A_{T 12} \frac{P_{3} z \Delta_{1}^{2}}{16 m^{2}}\right)
$$

On-going work $\quad \Pi_{02}^{*}\left(\Gamma_{3}\right)=i K\left(-A_{T g} \frac{(E+m) P_{\Delta} \Delta_{2}}{2 m^{3}}-A_{T 8} \frac{(E+m) \Delta_{2} E^{2}}{2 m^{3}}-A_{T 12} \frac{(E+m) \Delta_{2} z}{8 m}\right)$

Decomposition

Requirement: four independent matrix elements

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$
± 0.83	$(0,0,0)$	0
± 1.25	$(0,0,0)$	0
± 1.67	$(0,0,0)$	0
± 0.83	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,0,0)$	0.69
± 1.67	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2, \pm 2,0)$	1.38
± 1.25	$(\pm 4,0,0)$	2.76

Average kinematically equivalent matrix elements

$$
\begin{aligned}
& \Pi^{1}\left(\Gamma_{0}\right)=C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{P_{3} \Delta_{y}}{4 m^{2}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}(E+m)}{2 m^{2}}\right), \\
& \Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)
\end{aligned}
$$

$$
\Pi^{1}\left(\Gamma_{2}\right)=i C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\Delta_{x} \Delta_{y}}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x} \Delta_{y}(E+m)}{8 m^{3}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x} \Delta_{y}(E+m)}{4 m^{2} P_{3}}\right)
$$

$$
\Pi^{1}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{x}(E+m)}{2 m^{2} P_{3}}\right)
$$

$$
\Pi^{2}\left(\Gamma_{0}\right)=C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{P_{3} \Delta_{x}}{4 m^{2}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x}(E+m)}{2 m^{2}}\right)
$$

$$
\Pi^{2}\left(\Gamma_{1}\right)=i C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\Delta_{x} \Delta_{y}}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x} \Delta_{y}(E+m)}{8 m^{3}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x} \Delta_{y}(E+m)}{4 m^{2} P_{3}}\right)
$$

$$
\Pi^{2}\left(\Gamma_{2}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{x}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{y}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x}^{2}(E+m)}{4 m^{2} P_{3}}\right)
$$

$$
\Pi^{2}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{y}(E+m)}{2 m^{2} P_{3}}\right)
$$

Lattice Results - Matrix Elements

Bare matrix elements

$$
\Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)
$$

Φ	$\{1,+3,(0,+2,0)\}$
Φ	$\{1,+3,(0,-2,0)\}$
Φ	$\{2,+3,(+2,0,0)\}$
Φ	$\{2,+3,(-2,0,0)\}$
Φ	$\{1,-3,(0,+2,0)\}$
Φ	$\{1,-3,(0,-2,0)\}$
Φ	$\{2,-3,(+2,0,0)\}$
Φ	$\{2,-3,(-2,0,0)\}$

$\{1,+3,(+2,0,0)\}$
$\{1,+3,(-2,0,0)\}$
$\{2,+3,(0,+2,0)\}$
$\{2,+3,(0,-2,0)\}$
$\{1,-3,(+2,0,0)\}$
$\{1,-3,(-2,0,0)\}$
$\{2,-3,(0,+2,0)\}$
$\{2,-3,(0,-2,0)\}$

Lattice Results - Matrix Elements

* Bare matrix elements

$$
\begin{aligned}
& \text { I }\{1,+3,(0,+2,0)\} \\
& \text { I }\{1,+3,(0,-2,0)\} \\
& \text { I }\{2,+3,(+2,0,0)\} \\
& \text { I }\{2,+3,(-2,0,0)\} \\
& \text { \$ }\{1,-3,(0,+2,0)\} \\
& \text { I }\{1,-3,(0,-2,0)\} \\
& \text { \$ }\{2,-3,(+2,0,0)\} \\
& \text { I }\{2,-3,(-2,0,0)\}
\end{aligned}
$$

Suppressed signal compared to $\gamma_{+} \gamma_{5}$ operators
$\Pi^{1}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{x}(E+m)}{2 m^{2} P_{3}}\right)$

Consistency checks

Norms satisfied encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

Consistency checks

Norms satisfied
encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

\star Alternative kinematic setup can be utilized

[Fernanda Steffens]

$$
\begin{array}{ll}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

FIG. 10. $z_{\max }$ dependence of $F_{\widetilde{H}+\widetilde{G}_{2}}$ and $\widetilde{H}+\widetilde{G}_{2}$ (left), as well as $F_{\widetilde{E}+\widetilde{G}_{1}}$ and $\widetilde{E}+\widetilde{G}_{1}$ (right) at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in the $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

FIG. 11. $z_{\max }$ dependence of $F_{\widetilde{G}_{4}}$ and \widetilde{G}_{4} at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

