Winter Hall A Collaboration

- ☐ Jan 16, 2024, 8:00 AM → Jan 17, 2024, 7:25 PM US/Eastern
- ARC 231/233 & Cebaf Center Auditorium (Jefferson Lab)
- Arun Tadepalli (Jefferson Lab), Bishnu Pandey (Virginia Military Institute), Carlos Ayerbe Gayoso (Old Dominion University), Mark Jones (Jefferson Lab), Michael Nycz (University of Virginia)

BDX

Dark Matter search in a beam-dump experiment at Jefferson Lab

M.Battaglieri (INFN) on behalf of the BDX Collaboration

<u>- (3) lab12</u>

Dark Matter (DM) vs Baryonic Matter (BM)

Compelling astrophysical indications about DM existence

★ How much DM w.r.t. BM?

 \star Does DM participate to non-gravitational interactions? \star Is DM a new particle?

- \star Constraint on DM mass and interactions
 - should be 'dark' (no em interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

 \star We can use what we know about standard model particles to build a DM theory Use the SM as an example: $SM = U(I)_{EM} \times SU(2)_{Weak} \times SU(3)_{Strong}$

Particles, interactions and symmetries

Known particles & new forcecarriers

Particles: quarks, leptons

Force-carriers: gluons, γ , W, Z, graviton (?), Higgs, ... Two options:

- \star

... assuming that the gravity is not modified and DM undergoes to other interactions

New matter interacting trough the same forces New matter interacting through new forces

Exploring the WIMP's option

\star Experimental limits

Slow-moving cosmological weakly interacting massive particles

- DM detection by measuring the (heavy) nucleus recoil
- Constraints on the interaction strength from the DM Direct Detection limits
 - Scattering through Z boson ($\sigma \sim 10^{-39}$ cm²): ruled out
 - Approaching limits for scattering through the Higgs ($\sigma \sim 10^{-45}$ cm²)
 - Close to irreducible neutrino background

* No signal observed in Direct Detection * Experiments have (almost) no sensitivity to (light) DM (<I GeV)

Direct Detection

I MeV

WIMPs paradigm is not the only option (keeping the DM thermal origin)

 $\langle \sigma v \rangle \sim g^2_{\text{Dark}} g^2_{\text{SM}} M^2_{\text{DM}}/M^4_{\text{mediator}}$

Light Dark Matter

I GeV

Light Dark Matter (<TeV) naturally introduces light mediators

3

10 TeV

WIMPs

Mz

New interaction

Light Dark Matter

\star Experimental limits

Light Dark Matter with a (almost) weak interaction (new force!)

- Direct Detection is difficult
 - Low mass elastic scattering on heavy nuclei produces small recoil
 - eV-range recoil requires a different detection technology
 - Directionality may help to go behind existing limits at large masses

Accelerators-based DM search

covers an unexplored mass region extending the reach outside the classical DM hunting territory

Light Dark Matter

I MeV

I GeV

Can be explored at accelerators!

elab12

4

BDX" Dark Matter search in a beam-dump experiment at Jefferson Lab

nuclei produces small recoil etection technology existing limits at large masses

High intensityModerate energy

Direct Detection

10 TeV

WIMPs

Mz

Experimental techniques

BDX" Dark Matter search in a beam-dump experiment at Jefferson Lab

e.

INFN

Fixed target vs. collider

Fixed Target

$\begin{array}{c} E_{1} & A' & E_{1} x \\ & E_{1} & (1-x) \\ \hline Nucleus \\ 10^{11} e^{-} & -10^{23} \\ \hline atoms \\ in \\ target \\ \end{array}$

$$\sigma \sim rac{lpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

high backgrounds limited A' mass

e+e- colliders

low backgrounds higher A' mass

* $I/M_{A'}$.vs. I/E_{beam} *Coherent scattering from Nucleus (~Z²)

Dark Photon Signatures

Vector mediated Light Dark Matter

• Vector-Portal: DM-SM interaction mediated by U(1) gaugeboson (dark photon or A') couples to electric charge

A' interaction scenarios

- Secluded: no constraints by cosmology for accelerator based experiments. Any ε allowed
- Visible decay: final state contains SM particles
- Invisible decay: A' decays to Dark Sector invisible particles

Dark Photon Signatures

Vector mediated Light Dark Matter

• Vector-Portal: DM-SM interaction mediated by U(1) gaugeboson (dark photon or A') couples to electric charge

A' interaction scenarios

- **Secluded**: no constraints by cosmology for accelerator based experiments. Any ε allowed
- Visible decay: final state contains SM particles
- Invisible decay: A' decays to Dark Sector invisible particles

A' Production mechanisms - e[±]

The Weizsacker-Williams approximation (A'-strahlung)
The first tree-level mechanism proposed

A' Production - resonant/nonresonant production

Specific for positron annihilation
A beam dump is a copious source of positrons
Positrons in the EM shower may have any energy in the range of 0 - E_{beam}

NON-RESONANT annihilation

• **RESONANT** annihilation

 $\sigma_r = \sigma_{\text{peak}} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4} ,$

Two step process I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

9

eelab12

BDX @ JLab

* JLab Hall-A offers the best condition for the BDX experiment

- A high energy beam: II GeV
- The highest available electron beam current: ~65 uA
- The highest integrated charge: 10²² EOT (41 weeks)
- ★ Fully parasitic wrt Hall-A physics program
- ★ Drilled shaft downstream of Hall-A BD
- Approved by JLab PAC-46 in July 2018 with maximum scientific rate
 (A) and waiting for scheduling
- ★ Expected to run in parallel to the Moeller experiment (2026-2029)
- ★ Presented, discussed, and included in SNOWMASS-21 report (RF6-RF0)
- ★ BDX would take advantage of the future II GeV positron beam and 20+ GeV upgrade
- ★ BDX Collaboration: more than 100 researchers from 18 institutions (US, Italy, Germany, UK, Korea) signed the BDX proposal

e @lab12

INFN

The BDX detector

e @lab12

INFN

E.M. Calorimeter

• Beam unrelated: cosmic rays (BDX-PROTO) • Beam related: n and muons (BDX-HODO) • High stat simulations (FLUKA and GEANT4) validated with measurements

Cosmic muons • Rate (E_{Thr}~300MeV) < 2 counts

Background

- Conservatively extrapolated from
- Measured rate scaled to the JLab set-up (x800 crystals)

EOT

10-1 10⁻¹²

10⁻¹³

12

e @lab12

INFN

 \star No μ , n and γ with E>100 MeV are found at the detector location ★ Validated by an in-situ measurement using BDX-HODO

* Neutrino

• $\pi \rightarrow \mu v_{\mu} \mu \rightarrow e v_{\mu} v_{e}$ • Mainly low energy (<60 MeV) from decay at rest • Some v produced in HadShower and boosted to BDX detector

> Non-negligible contribution byv CC interaction

 $v + N \rightarrow X + e^{-1}$ v + e⁻ suppressed

Neutrino irreducible bg represents the ultimate limitation for BDX (~I0 counts in BDX life time)

BDX sensitivity

Beam time request (parasitic to Hall-A ops)

• 10²² EOT (65 uA for 285 days)

• BDX can run parasitically with any Hall-A E_{beam}>10 GeV experiments (e.g. Moeller)

Beam-related background		Cosmic background	
Energy threshold	N _v (285 days)	Energy threshol	d √Bg (285 days)
300 MeV	~10 counts	300 MeV	<2 counts

- Calculation includes resonant positron annihilation
- Sensitivity to inelastic LDM is not shown

The sensitivity of BDX exceeds more than 10x the existing limits on LDM production Such tight exclusions will set limits on LDM mechanisms or render an important null result

 m_{χ} [MeV]

BDX-MINI @JLab

BDX-MINI: pilot experiment to prove the validity and feasibility of the BDX experiment

- Two wells dug for bg muon tests
- E_{beam}=2.2 GeV, no muons
- Limited reach but first physics result!

• 44 PbWO4 PANDA/FT-Cal crystals (~1% BDX active volume) • 6x6 mm2 SiPM readout •2 active plastic scintillator vetos: cylindrical and octagonal (8 sipm each) + 2x lids + Passive W shielding

M.Battaglieri et al. EPJC (2021) 81:164

e. 8 lab12

INFN

 $\epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4$ Ŋ

14

- Installed in March 2019
- Run form Dec 2019 to Aug 2020
- Collected 4e21 EOT (40% BDX!) in ~4 months (+ cosmics)
- Good detector performance with high duty factor

• Data-taking completed, analysis completed • Results provide exclusion limits similar to the best existing experimnts (EI37, NA64, BaBar, ...)

LDM searches status

- CERN-FIPs workshop report, (SNOWMASS22) shows that BDX offers great potential for discovering LDM (or disproving it, in a large area of parameter space)
- Several experiments planned/proposed (LHC, SLAC, Mainz, FNAL, KEK, PSI, LPARC) with a variety of beams (proton, leptons, photons), energies (from 150 MeV to 14 TeV) and experimental techniques (visible, invisible, recoil, ..) with a timeline that reaches ~2042
- BDX has the unique opportunity to be one of the first (significant) experiments to set limits and verify/falsify viable theoretical scenarios (relic LDM, inelastic DM, ...)
- Over the last 5 years, NA64 has pushed the exclusion limit slightly down (it is scheduled to run more!)

L.G. Krnjaic et al. Snowmass 2021 Rare & Precision Frontier (RF6): 7 2022 C.Antel et al. Feebly interacting particles: Fips 2022 workshop report, 2023

Conclusions

- * The existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of mass
- * Accelerator-based (Light)DM search provides a unique feature of distinguishing DM signal from any other cosmic anomalies or effects
- * An extensive program to explore the Dark Sector making use of the high-intensity ~IIGeV electron beam available at Jefferson Lab is in full swing
- * Discovery or decisive tests of the simplest scenarios will possible in the next 5-10 years!
- * BDX is an optimised beam-dump experiment ready to run at Jefferson lab
- * The BDX concept has been tested with several prototypes and dedicated measurement campaigns
- * The BDX-MINI successful pilot run has demonstrated the potential of the BDX (technique and physics reach)
- * Collecting 10²² EOT in 285 days of parasitic running (in parallel to Moeller?) at 11 GeV, the BDX experiment would be >10 times more sensitive than previous experiments

and matter over a broad range of mass hing DM signal from any other cosmic tensity ~IIGeV electron beam available 5-10 years!

asurement campaigns X (technique and physics reach) at II GeV, the BDX experiment would