OThomas Jefferson National Accelerator Facility

Weak Axial-vector Form Factor

B. Wojtsekhowski, JLab

in collaboration with
P. Degtiarenko, A. Deur, J. Golak,
D. Jones, C. Keppel, E. King, J. Napolitano

Axial FF

Charge current experiments for DIS

Figure 1. Unpolarised $e^{ \pm} p \mathrm{NC}$ and CC single differential cross sections, $d \sigma / d Q^{2}$.

3. Polarised CC cross sections

The longitudinal polarisation has a particularly strong effect on the CC cross sections, as they are predicted to be linearly dependent on the polarisation, independently of kinematic variables:

$$
\begin{equation*}
\sigma_{C C}^{e^{ \pm} p}\left(P_{e}\right)=\left(1 \pm P_{e}\right) \sigma_{C C}^{e^{ \pm} p}\left(P_{e}=0\right) \tag{4}
\end{equation*}
$$

High-energy quasielastic $\boldsymbol{v}_{\boldsymbol{\mu}} \boldsymbol{n} \rightarrow \boldsymbol{\mu}^{-} \boldsymbol{p}$ scattering in deuterium

T. Kitagaki, S. Tanaka, H. Yuta, K. Abe, K. Hasegawa, A. Yamaguchi, K. Tamai, T. Hayashino, Y. Otani, H. Hayano, and H. Sagawa
vector-current (CVC) hypothesis are also assumed to simplify the formulation. Reported values of the axial-vector mass M_{A} range between 0.65 and 1.07 GeV ; the weighted average is somewhat smaller than, but consistent with, the mass value $M_{A} \sim 1.15 \mathrm{GeV}$ obtained from electroproduction experiments. ${ }^{5}$ These results, as well as the absolute cross section for the quasielastic reaction, are consistently described by the formulation of the $V-A$ theory in the low-ener $\boldsymbol{\nu}_{\boldsymbol{\mu}} \boldsymbol{n} \rightarrow \boldsymbol{\mu}-\boldsymbol{p}$; there has been no experi-

FIG. 1. Schematic layout of the neutrino beam line and the bubble chamber with two-plane external muon identifiers (EMI).
from this experiment have been published elsewhere. ${ }^{6-10}$

II. EXPERIMENTAL DETAILS

A. Neutrino beam and bubble chamber

The wide-band neutrino beam was produced by 350 $\mathrm{GeV} / \mathrm{c}$ protons striking a $33-\mathrm{cm}$-long beryllium oxide target. Figure 1 shows the schematic layout of the neutrino beam line. Secondary particles with positive charge were focused by a horn magnet pulsed to a maximum current of 80 kA . The neutrinos were produced from π^{+}and K^{+} decays in flight in a 400 -m-long decay pipe. With the exception of neutrinos, almost all particles which pass through this decay pipe are absorbed in the $900-\mathrm{m}$-long earth berm and iron shield. Thus at the end of the berm, a beam consisting primarily of v_{μ} emerged. The contamination of the neutrino flux by antineutrinos is estimated by a Monte Carlo simulation ${ }^{11}$ to be about 14%. The neutrino flux has a maximum at 20 GeV and extends above 200 GeV with an average energy of 27 GeV . A total of 328000 pictures was taken with 4.9×10^{18} extracted protons, averaging about 1.5×10^{13} protons per pulse. A detailed study of this flux is given in Ref. 10.

Article

Measurement of the axial vector form factor from antineutrino-proton scattering

48 | Nature | Vol 614 \| 2 February 2023

https://doi.org/10.1038/s41586-022-05478-3

Received: 19 April 2022
Accepted: 25 October 2022
Published online: 1 February 2023

Open access

(W) Check for updates
T. Cai ${ }^{1,2 \boxtimes}$, M. L. Moore ${ }^{1,26}$, A. Olivier ${ }^{1}$, S. Akhter ${ }^{3}$, Z. Ahmad Dar ${ }^{3,4}$, V. Ansari ${ }^{3}$, M. V. Ascencio ${ }^{5,27}$, A. Bashyal ${ }^{6,28}$, A. Bercellie ${ }^{1}$, M. Betancourt ${ }^{7}$, A. Bodek ${ }^{1}$, J. L. Bonilla ${ }^{8}$, A. Bravar ${ }^{9}$, H. Budd ${ }^{1}$, G. Caceres ${ }^{10,29}$, M. F. Carneiro ${ }^{6,10,30}$, G. A. Díaz ${ }^{1}$, H. da Motta ${ }^{10}$, J. Felix ${ }^{8}$, L. Fields ${ }^{11}$, A. Filkins ${ }^{4}$, R. Fine ${ }^{1,31}$, A. M. Gago ${ }^{5}$, H. Gallagher ${ }^{12}$, S. M. Gilligan ${ }^{6}$, R. Gran ${ }^{13}$, E. Granados ${ }^{8}$, D. A. Harris ${ }^{2,7}$, S. Henry ${ }^{1}$, D. Jena ${ }^{7}$, S. Jena ${ }^{14}$, J. Kleykamp ${ }^{1,32}$, A. Klustová ${ }^{15}$, M. Kordosky ${ }^{4}$, D. Last ${ }^{16}$, T. Le ${ }^{12}$, A. Lozano ${ }^{10}$, X.-G. Lu ${ }^{17,18}$, E. Maher ${ }^{19}$, S. Manly ${ }^{1}$, W. A. Mann ${ }^{12}$, C. Mauger ${ }^{16}$, K. S. McFarland ${ }^{1 \boxtimes 1]}$, B. Messerly ${ }^{20,33}$, J. Miller ${ }^{21}$, O. Moreno ${ }^{4,8}$, J. G. Morfín ${ }^{7}$, D. Naples ${ }^{20}$, J. K. Nelson ${ }^{4}$, C. Nguyen ${ }^{22}$, V. Paolone ${ }^{20}$, G. N. Perdue ${ }^{1,7}$, K.J. Plows ${ }^{18}$, M. A. Ramírez ${ }^{8,16}$, R. D. Ransome ${ }^{23}$, H. Ray ${ }^{22}$,
D. Ruterbories ${ }^{1}$, H. Schellman ${ }^{6}$, C. J. Solano Salinas ${ }^{24}$, H. Su ${ }^{20}$, M. Sultana', V. S. Syrotenko ${ }^{12}$, E. Valencia ${ }^{4,8}$, N. H. Vaughan ${ }^{6}$, A. V. Waldron ${ }^{15,25}$, M. O. Wascko ${ }^{15}$, C. Wret ${ }^{1}$, B. Yaeggy ${ }^{21,34}$ \& L. Zazueta ${ }^{4}$

The CC proposal history at JLab

1988 LOI to PAC3 by J. Napolitano
2003 LOI to PAC25 by A. Deur
2023 LOI to PAC51 by D. Dutta
The LOI 1988 is missing in PAC3 report, discovered just recently

The LOI 2003 had the focus on $\mathrm{Q}^{2} \sim 1-3 \mathrm{GeV}^{2}$. Interest is very large, some questions about how to proceed, was not updated to proposal

The LOI 2023 proposed a different idea (for low Q^{2}) based on TDIS proton detector and the reaction with a positron beam: $e^{+}+d->p+p+v$

Collaboration buildup

The group started from a concept + LOls + a few experts
Added INFN: E.Cisbani, R.Perrino, O.Benhar +
Added SBS collaborators: T.Averett
CLAS12 detector expert: D.Carman
CH4 detector under study by M.Bukhari

The nucleon elastic FFs

Cross section calculation

C.H. LLEWELLYN SMITH

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA

$$
\begin{equation*}
F_{A}\left(Q^{2}\right)=F_{A}(0) /\left(1+Q^{2} / M_{A}{ }^{2}\right)^{2}, \tag{6}
\end{equation*}
$$

where the value of $F_{A}(0)=-1.23 \pm 0.01$ is taken from β decay experiments. ${ }^{16}$
for the quasielastic reaction can be expressed in terms of only one parameter, M_{A}, as

$$
\begin{align*}
& \frac{d \sigma}{d Q^{2}}=\frac{G^{2} M^{2} \cos ^{2} \theta_{C}}{8 \pi E_{v}{ }^{2}}\left[A\left(Q^{2}\right)+B\left(Q^{2}\right) \frac{(s-u)}{M^{2}}\right. \\
&\left.+C\left(Q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right] \tag{7}
\end{align*}
$$

where $s-u=4 M E_{\nu}-Q^{2}-m_{\mu}{ }^{2}$, and $M=\left(M_{n}+M_{p}\right) / 2$. The values of the Fermi constant and of the Cabibbo angle are taken to be $G=1.16632 \times 10^{-5} \mathrm{GeV}^{-2}$ and $\cos \theta_{C}=0.9737$, respectively (see Ref. 16). The structure

$$
M_{A}=1.03 \pm 0.04 \mathrm{GeV},
$$

Challenges in the study of $\mathrm{e}+\mathrm{p}$-->v+n process

- Cross section for the weak process is $\sim 10^{-39} \mathrm{~cm}^{2} / \mathrm{sr}$
- Pion photo-production cross section $\sim 10^{8}$ of the weak one
- Proton rate from electron elastic e-p $\sim 10^{7}$ of the weak one

The key is a lepton initial energy

$$
E_{1}=\left(E_{n}-m\right) /\left[1+\frac{P_{n} \cos \theta_{n}-E_{n}}{m}\right]
$$

Reconstructed using the momentum and angle of the neutron

The key is a lepton initial energy

$$
E_{1}=\left(E_{n}-m\right) /\left[1+\frac{P_{n} \cos \theta_{n}-E_{n}}{m}\right]
$$

Reconstructed using the momentum and angle of the neutron

$$
E_{1}=\left(E_{n}-m_{n}+m_{\pi}^{2} / 2 m_{n}\right) /\left[1+\frac{P_{n} \cos \left(\theta_{n}\right)-E_{n}}{m_{n}}\right]
$$

Proposed solution for the $\mathrm{e}+\mathrm{p}-->\mathrm{v}+\mathrm{n}$ experiment

1. High momentum resolution neutron detector
2. High angular resolution neutron detector
3. Reconstruction of the incident energy to at least 1%
4. High efficiency of the charge particle spectrometer as a veto
5. Analysis of the distribution (3.) shape
6. Determination of the extra rate at the elastic "peak"
7. Beam helicity effect is 100% for e p $->\vee \mathrm{n}$

$H(e, e ' p)$

Electron initial energy from a spectrometer

Electron initial energy from T_{p} and θ_{p}

Pion rate calculation:
$H\left(e, \pi^{+} n\right)$
$\mathrm{L}_{\gamma \mathrm{p}}=6.3 \times 10^{34}$ (both real and q-real photons in 1.4% interval at end-point)
$\mathrm{d} \sigma / \mathrm{d} \Omega_{\pi(\mathrm{cms})}=0.5 \times 10^{-30} \mathrm{~cm}^{2} / \mathrm{sr}$ (CLAS arXiv:0903.1110) =>

Rate in 50 msr (lab solid angle) is 400 Hz

Photon energy from a pion E, θ in the spectrometer

Acceptance (efficiency)

SBS has 70 msr : a large acceptance in angle θ Shift (e $-\pi$) $=0.35 \mathrm{deg}$
$H\left(e, \pi^{+} n\right)$

Photon energy from a pion E, θ in the spectrometer

$\mathrm{H}\left(\mathrm{e}, \mathrm{n} \operatorname{Ino} \pi^{+}\right)$

Photon energy from T_{n} and θ_{n} (assuming CC process) It has $42 \mathrm{MeV}(\sim 2 \%)$ shift due to the pion mass effect

$$
E_{1}=\left(E_{n}-m_{n}+m_{\pi}^{2} / 2 m_{n}\right) /\left[1+\frac{P_{n} \cos \left(\theta_{n}\right)-E_{n}}{m_{n}}\right]
$$

Factor ~ 2 in the rate reduction

Electron energy from T_{n} and θ_{n} (assuming CC process)
$\mathrm{H}\left(\mathrm{e}, \mathrm{n}\right.$ Ino $\left.\mathrm{e}^{\prime}\right)+\mathrm{H}\left(\mathrm{e}, \mathrm{n}\right.$ Ino $\left.\pi^{+}\right)$

Electron energy from T_{n} and θ_{n} (for CC process)

Weak Proton Form Factor at $1 \mathrm{GeV}^{2}$

Estimation of the experiment parameters:

- Beam energy 2.2 GeV with a $10-\mathrm{cm}$ long LH 2 target
- Electron/pion/neutrino angle 30 degrees, $p_{e}=1.7 \mathrm{GeV} / \mathrm{c}$
- Recoil proton/neutron 48 degrees, $\mathrm{p}_{\mathrm{n}}=1.1 \mathrm{GeV} / \mathrm{c}$
- $\pi+$ in SBS; efficiency $\sim 90 \%+5 \%$ (μ are forward) - need MC
- Electron detection efficiency 99.9\%; solid angle 50 msr - need MC
- Neutron in LND: solid angle 75 msr ; at 15 m distance: $2 \mathrm{~m} \times 8 \mathrm{~m}$
- For $1 \% \mathrm{dE}_{1} / \mathrm{E}_{1}$ using $E_{1}=\left(E_{n}-m\right) /\left[1+\frac{P_{n} \cos \theta_{n}-E_{n}}{m}\right]$
angular resolution $\delta \theta \sim 6 \mathrm{mrad}=>8 \mathrm{~cm}$ coordinate time resolution $\mathrm{dt}=>0.11 \mathrm{~ns}$

Weak Proton Form Factor at $1 \mathrm{GeV}^{2}$

- Beam energy 2.2 GeV with a $10-\mathrm{cm}$ long LH2 target
- Electron/pion/neutrino angle 30 degrees, $p_{e}=1.7 \mathrm{GeV} / \mathrm{c}$
- Recoil proton/neutron 48 degrees, $\mathrm{p}_{\mathrm{n}}=1.1 \mathrm{GeV} / \mathrm{c}$
- $\pi+$ in SBS; efficiency $\sim 90 \%+5 \%$? (μ are forward) - need MC
- Electron detection efficiency 99.9\%; solid angle 50 msr - need MC
- Neutron in LND: solid angle 75 msr ; at 15 m distance: $2 \mathrm{~m} \times 8 \mathrm{~m}$
- For $1 \% \mathrm{dE}_{1} / \mathrm{E}_{1}$ using $E_{1}=\left(E_{n}-m\right) /\left[1+\frac{P_{n} \cos \theta_{n}-E_{n}}{m}\right]$

$$
\text { Projected result } A=11 \times 10^{-4}+/-3 \times 10^{-4}
$$

Weak process cross section $1.1+/-0.3 \times 10^{-39} \mathrm{~cm}^{2} / \mathrm{sr}$

False asymmetry is below 10^{-5}, as it was in MC for sFF: A in e,e'p due to the recoil proton side polarization and the detector as an analyzer

Proton Axial-vector Form Factor at $1 \mathrm{GeV}^{2}$

Projected result $A=11 \times 10^{-4}+/-3 \times 10^{-4}$
Weak process cross section $1.1+/-0.3 \times 10^{-39} \mathrm{~cm}^{2} / \mathrm{sr}$
After 500 hours data taking

Backup slides

Time-of-Flight resolution

$$
\begin{gathered}
\frac{\sigma_{p}}{p}=\gamma^{2} \times \frac{\sigma_{\beta}}{\beta} \\
\frac{\sigma_{\beta}}{\beta}=\frac{\sigma_{T o F}}{T o F}
\end{gathered}
$$

for 10 m path and 0.12 ns time resolution

$$
\begin{aligned}
& \text { using } Q^{2}=1 \mathrm{GeV}^{2}(\gamma=1.5) \\
& \frac{\sigma_{p}}{p}=\gamma^{2} \times 1 / 275 \sim 0.4 \%
\end{aligned}
$$

0.12 ns time resolution is hard

Modern ToF system CLAS12

D.S. Carman, L. Clark, R. De Vita et al.

Fig. 14. Measurements of the time resolution (ps) vs. counter length (cm) achieved for the FTOF panel-1b system averaged over the six counters of a given length belonging to each CLAS12 Forward Carriage sector. These data were acquired on the bench using cosmic rays. Full details are included in Ref. [11].

Modern ToF system CLAS12

Parameter	Design Value
Panel-1a	
Angular Coverage	$\theta=5^{\circ} \rightarrow 35^{\circ}, \phi: 50 \%$ at $5^{\circ} \rightarrow 85 \%$ at 35°
Counter Dimensions	$L=32.3 \mathrm{~cm} \rightarrow 376.1 \mathrm{~cm}, w \times h=15 \mathrm{~cm} \times 5 \mathrm{~cm}$
Scintillator Material	BC-408
PMTs	EMI 9954A, Philips XP2262
Design Resolution	$90 \mathrm{ps} \rightarrow 160 \mathrm{ps}$
Panel-1b	
Angular Coverage	$\theta=5^{\circ} \rightarrow 35^{\circ}, \phi: 50 \%$ at $5^{\circ} \rightarrow 85 \%$ at 35°
Counter Dimensions	$L=17.3 \mathrm{~cm} \rightarrow 407.9 \mathrm{~cm}, w \times h=6 \mathrm{~cm} \times 6 \mathrm{~cm}$
Scintillator Material	BC-404 (\#1 \rightarrow \#31), BC-408 (\#32 \rightarrow \#62)
PMTs	Hamamatsu R9779
Design Resolution	$60 \mathrm{ps} \rightarrow 110 \mathrm{ps}$
Panci-2	
Angular Coverage	$\theta=35^{\circ} \rightarrow 45^{\circ}, \phi: 85 \%$ at $35^{\circ} \rightarrow 95 \%$ at 45°
Counter Dimensions	$L=371.3 \mathrm{~cm} \rightarrow 426.1 \mathrm{~cm}, w \times h=22 \mathrm{~cm} \times 5 \mathrm{~cm}$
Scintillator Material	BC-408
PMTs	Photonis XP4312B, EMI 4312KB
Design Resolution	$145 \mathrm{ps} \rightarrow 160 \mathrm{ps}$

e 1: Table of parameters for the scintillators, PMTs, and counters for the FTOF ranel-1b, and panel-2 arrays.

Weak Proton Form Factor at $2 \mathrm{GeV}^{2}$

Estimation of the experiment parameters:

- Beam energy 4.4 GeV with a $10-\mathrm{cm}$ long LH 2 target
- Electron/pion/neutrino angle 21 degrees, $p_{e}=3.4 \mathrm{GeV} / \mathrm{c}$
- Recoil proton/neutron 43 degrees, $\mathrm{p}_{\mathrm{n}}=1.7 \mathrm{GeV} / \mathrm{c}$
- $\pi+$ in SBS; efficiency $\sim 96 \%+3 \%$ (μ are forward) - need MC
- Electron detection efficiency 99.9\%; solid angle 50 msr - need MC
- Neutron in LND: solid angle 135 msr ; at 15 m distance: $4 \mathrm{~m} \times 8 \mathrm{~m}$

Luminosities

$L_{e p}=2.7 \times 10^{38}$ for $10 \mathrm{~cm} \mathrm{LH} 2 \times 100 \mu \mathrm{~A}$

Photon flux estimate:
Quasi real: $I_{e} \times 0.013 \times d E_{\gamma} / E_{e} \times 0.75$ (Budnev-1975)
Real: $I_{e} \times 0.007 \times d E_{\gamma} / E_{e} \quad(10 \mathrm{~cm} L H 2 / 2 / 735 \mathrm{~cm})$
$I_{e} \times(0.013 \times 0.014 \times 0.75+0.007 \times 0.014)$
$L_{\gamma p}=6.3 \times 10^{34}$

Parameters of SBS

Solid angle	$\theta_{\text {central }}$ degree	$\Omega,$	$\begin{array}{\|c\|} \hline \mathrm{D}, \\ \text { meter } \end{array}$	$\begin{array}{c\|} \hline \text { Hor. range, } \\ \text { degree } \end{array}$	$\begin{gathered} \text { Vert. range, } \\ \text { degree } \end{gathered}$
	3.5	5	9.5	± 1.3	± 3.3
	5.0	12	5.8	± 1.9	± 4.9
	7.5	30	3.2	± 3	± 8
	15	72	1.6	+4.8	+122.
Resolution:	30	76	1.5	± 4.9	± 12.5
Momentum =>	$\frac{\sigma_{p}}{P}=0.0029+0.0003 \times p[\mathrm{GeV}]$				
Angular =>	$\boldsymbol{\sigma}_{\boldsymbol{\theta}}=\mathbf{0 . 1 4}+\mathbf{1 . 3} / \boldsymbol{p}[\mathrm{GeV}], \mathrm{mrad}$				
Momentum acceptance =>	\boldsymbol{P} range from 2-10			, $\mathrm{GeV} / \mathrm{c}$	

Time-of-flight

SBS neutron arm -

Hadron Shower Calorimeter

SBS neutron arm

Isovector axial FF and GPD \tilde{H}

M. Diehl, P. Kroll arXiv:1302.4604; hep-ph>arXiv:1703.05000

JLab - Wide Angle Compton Scattering:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{2 \pi \alpha_{e m}^{2}}{s^{2}}\left[-\frac{u}{s}-\frac{s}{u}\right]\left\{\frac{1}{2}\left(R_{V}^{2}(t)+R_{A}^{2}(t)\right)-\frac{u s}{s^{2}+u^{2}}\left(R_{V}^{2}(t)-R_{A}^{2}(t)\right)\right\}
$$

$$
K_{L L}=2 \frac{-t}{s-u} \frac{R_{A}}{R_{V}} \frac{1+\eta \kappa_{T}}{1+\kappa_{T}^{2}}\left[1+\frac{t^{2}}{(s-u)^{2}} \frac{R_{A}^{2}}{R_{V}^{2}} \frac{1}{1+\kappa_{T}^{2}}\right]^{-1}
$$

