Hypernuclear DAQ

Alexandre Camsonne, Hanjie Liu, Chandan Gosh ERR preparation meeting November 14th 2023

Outline

- Experiment overview
- Channel count
- Overview pipelined electronics
- Trigger overview
- To do
- Conclusion

Experimental setup for E05-115 (2009) at JLab Hall C

PARTICLE DETECTORS

TOF walls (Plastic scintillators)

Cherenkov detectorsAerogel (n=1.05)

• Water (n=1.33)

Drift chambers

Channel count

	Detector	Current status	No. o	Ready		
	Detector	Current status	ADC	TDC	iceauy:	
	Drift Chambers	To be tested	N/A	360 + 360		
HKS	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
LIEC	Drift Chambers	To be tested	N/A	1098+360		
пез	TOF counters	To be tested	116	116		

Level 1 & Trigger Distribution

Crate Level – Signal Distribution

- VXS Based, 20 Slot Redundant Star Backplane
- VME64x backplane w/VXS (VITA 41 Standard) provides standard with high speed serial extension (new J0 connector)
- 18 Payload slots w/VME64x, 2 Switch slots
- Each payload slot has 8 high speed capable links (10Gbps each) to both switch slots

Crate Level Use:

- VME64x used for event readout
- VXS: Low jitter clock & trigger distribution
- VXS: Gigabit serial transmission for L1 data streams to switch slot for processing

VXS (VITA 41 standard) VME64x + high speed serial fabric on J0

Capturing the Pulses...

Front-End Electronics: fADC250

- 16 Channel 12bit, 250Msps Flash ADC
- 8µs raw sample pipeline, >300kHz sustained trigger rate (bursts @ ~15MHz)
- Post-processing in customizable firmware to extract time, charge, and other parameters minimizing event size
- Module supports 2eSST VME transfers at 200MB/s transfer rate
- Large event block sizes (>100) to minimize CPU interrupt handling
- VXS P0/J0 outputs 5Gbps L1 data stream (hit patterns & board sum)
- Used in existing 6GeV program: Hall A BigBite
 Upgraded Hall A Moller Polarimeter

Channel count

	Detector	Current status	No. o	Ready		
	Detector	Current status	ADC	TDC	Ready:	
	Drift Chambers To be tested		N/A	360 + 360		
HKS	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
LIES	Drift Chambers	To be tested	N/A	1098+360		
TIE5	TOF counters	To be tested	116	116		

FADC = 88 + 42 + 48 + 116 = 294 channels = 19 FADCs = 2 VXS crates (NPS)

V1190 = 2268 channels = 18 V1190 = 1 VME64X crate (HMS/SHMS/SBS could use CDET VETROC) TOF = 204 channels = 7 V1290 = 8 F1 = 3 VETROC (SBS GRINCH)

Will be running during Moller : NPS,SBS,SoLID hardware available, most likely enough FADCs Can use HMS/SHMDS electronics BPM rasters : 2 FADC

Trigger rates

Torrect	Areal	Beam	HES rate (/kHz)	нк	S rate (/k	Hz)	Accidental	(*) Assuming, HES: 30 ns width		
Target	[/(g/cm ²)]	$\begin{bmatrix} density \\ [/(g/cm^2)] \end{bmatrix}$	[/(g/cm ²)]	$(/ \mu A)$	e'	π+	K+	р	(/kHz)	HKS: 200 ns width
⁶ Li			120	22	0.27	28	1.0			
⁹ Be	100	50	50	140	21	0.26	27	1.8		
¹¹ B	100			170	21	0.25	26	2.1		
²⁷ AI		50	930	20	0.24	25	10.5			
⁴⁰ Ca			1100	26	0.31	33	14.8			
⁴⁸ Ca	150		940	25	0.31	32	13.8			
²⁰⁸ Pb		20	1300	8.2	0.24	10	4.9			

Data rates

- Rough estimates
 - HKS = 1 MHz
 - HES = 1 MHz
 - Coincidence = 1MHz x 1 MHz x 20 ns = 2 KHz
- Plan for up to 20 KHz desirable
- If no waveform could take 200 KHz
- Using CODA3 and event blocking should be doable (similar to CLAS12) will be tested during NPS
- Need to evaluate detector occupancies
- If useful can record full FADC waveforms

Example scintillator SoLID beam test

Data rates with full sampling

- Event size
 - 57 kB with 40 samples 100 % occupancy
- Max trigger rate : 15 KHz
- Data rate : 860 MB/s
- Tape : 12 PB

Data rates with time / integral

- Event size
 - 13 kB with time and amplitude 100 % occupancy
- Max trigger rate : 15 KHz
- Data rate : 190 MB/s
- Can be handled now
- Tape : 2.6 PB

Can program VTP for coincidences between scintillators If use VETROC instead of V1190 could add Drift Chamber to trigger

Additionnal electronics

- Beamline info
 - Target BPM
 - Raster
 - 1C12 BPM cabling

To do / Testing

- Bench testing and testing with detector VETROC
- Setup FADC trigger with VTP
- Setup testing in ESB

Additionnal detectors

- MCP PMTs
- MRPC
- Would need dedicated new electronics

Conclusion

- HKS and HES
 - FADC = 88 + 42 + 48 + 116 = 294 channels = 19 FADCs = 2 VXS crates
 - V1190 = 2268 channels = 18 V1190 = 1 VME64X crate
 - TOF = 204 channels = 7 V1290 = 8 F1 = 3 VETROC
 - Could use HMS/NPS/SBS hardware
- CODA3 with event blocking should allow 20 kHz trigger rate (200 KHz with time and amplitude)
- Digital trigger using FADC and VTP
- If use VETROC instead of V1190 can include in L1 trigger (High res TOF and Drift Chamber)

Backup

CLAS12	Detector	Can be in trigger?	Will be in trigger?	Trigger Algorithm
	ECAL/PCAL	Yes	Yes	U/V/W Clustering
	DC	Yes	Yes	Segment Position/Angle Finding
	CTOF/FTOF	Yes	Yes	Hit based
	HTCC/LTCC	Yes	Yes	Hit based
	FT	Yes	Yes	3x3 Clustering
	CND	Yes	No	N/A
	SVT	Yes	No	N/A
	RICH	Yes	No	N/A
	MicroMegas	No	No	N/A

• CLAS12 triggering will support geometric matching (e.g. drift chamber segment points to clusters, etc...)

- Scope like interface on GTP allows real-time display of found segments by trigger logic
 - Cosmic event shown where only 1 segment was the trigger condition

			DIAG GUI		_ = ×
LOCALHOST	Capture Event	Stop Capture	Next Event	Previous Event	Print Screen
LOCALHOST	Status WaveCapture DCTrigger				
SWA: GTP	Jpdate Mode: Manual Start Trigger Stop Trigger Fo	rce Trigger			
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
		┟ ╎ ┶╎ <u>┝</u> ┙┝╷╸┝╷╸┝╷╸┝╷╸┝╷╸┝╷╸┝╷╸┝╷╸┝	┕┥┥┥┍┟┥┥┥┙┥┥┥┥╸┥┥┥┙		
		·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			└┥┥┑┦ぐ┤┥┙┥┥┥╸┥ぐ┤┥┥		
	<u> </u>				

FADC deadtime with waveforms

				_						
		ADC	TDC	Event size						
HKS										
	Drift chamber		720	2880						
	TOF counter	88	88	14432						
	Aerogel Cherenkov	42	42	6888						
	Water Cherenkov	48	48	7872						
HES	Drift Chambers		1458	5832						
	TOF counter	116	116	19024						
								122102720		
		294	2472	56928		853.92	max	64	12.21037	12 PB
		294	2472	56928		853.92	max	64	12.21037	12 PB
	High resolution	294	2472 204	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution	294	2472 204 2268	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution	294	2472 204 2268	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution	294	2472 204 2268	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution FADC	294 19	2472 204 2268	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution FADC	294 19	2472 204 2268	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution FADC V1190	294	2472 204 2268 18	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution FADC V1190 VETROC	294 19	2472 204 2268 18 3	56928		853.92	max	64	12.21037	12 PB
	High resolution Low resolution FADC V1190 VETROC V1290	294	2472 204 2268 18 3 7	56928		853.92	max	64	12.21037	12 PB

		ADC	TDC	Event size				
HKS								
	Drift chamber		720	2880				
	TOF counter	88	88	1056				
	Aerogel Cherenkov	42	42	504				
	Water Cherenkov	48	48	576				
HES	Drift Chambers		1458	5832				
	TOF counter	116	116	1392				
		294	2472	12240	183.6	MB/s max		
	112.1							
	High resolution		204					
	Low resolution		2268		2625333120	MB	2.625333	РВ
	FADC	19						
			4.5					
	V1190		18					
	VETROC		3					
	V1290		7					
	F1		4					