$\Lambda(1405)$ from Lattice QCD

Joseph Moscoso

University of North Carolina, Chapel Hill

Baryon Scattering Collaboration (BaSc)

Graduate Research Fellowship Program

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mark your calendars

Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy

PWA13/ATHOS8 May 28 - June 1, 2024

William & Mary, Williamsburg, VA

$\Lambda(1405)$ from Lattice QCD

<u>Outline</u>

Nature of the Lambda (1405)

Lattice QCD

- Resonance Analysis
- Conclusions and Outlook

Phys. Rev. Lett. **132**, 051901 [arXiv:2307.10413] Phys. Rev. D **109**, 014511 [arXiv:2307.13471]

<u>Theoretical Prediction in 1959 by Dalitz and Tuan</u> Resonance Study in $K^-p \rightarrow \pi \Sigma$ Amplitude [Dalitz & Tuan, PRL **2** (1959) 425]

╋

Experimental Evidence of Resonance

Enhancement in $\pi\Sigma$ mass spectrum in bubble chambers [Alston et al., PRL 6 (1961) 698]

$$\Lambda(1405), I = 0, J^P = \frac{1}{2}$$

Nature of the $\Lambda(1405)$

Prediction [Dalitz & Tuan, PRL **2** (1959) 425]

Evidence [Alston et al., PRL 6 (1961) 698]

Negative Parity Baryons in Quark Model Isgur & Karl

 Λ mass low compared to prediction from QCD

Nature of the $\Lambda(1405)$

Prediction [Dalitz & Tuan, PRL 2 (1959) 425]

Evidence [Alston et al., PRL 6 (1961) 698]

Quark Model [Isgur & Karl, PRD **18** (1978) 4187]

Cloudy-Bag Chiral Model [Fink et al., PRC 41 (1990) 2720]

Chiral Coupled-Channel [Oset & Ramos, NPA 635 (1997) 99]

SIDDHARTHA at DA Φ NE: K^-p Scattering Length [Bazzi et al., PLB **704** (2011) 113]

Spin & Parity Measured @ CLAS. $J^P =$ [Moriya et al., PRC **87** (2013) 035206]

Nature of the $\Lambda(1405)$

Nature of the $\Lambda(1405)$

One or Two Resonances?

PDG 2020 $1/2^+$ **** Λ $\Lambda(1380) \ 1/2^{-1}$ $\Lambda(1405)$ $1/2^{-}$ **** $\Lambda(1520)$ $3/2^{-}$ **** $\Lambda(1600)$ $1/2^+$ **** $\Lambda(1670)$ $1/2^{-}$ **** $\Lambda(1690)$ $3/2^-$ ****

* * **	Existence is certain.
* * *	Existence is very likely.
**	Evidence of existence is fair.
*	Evidence of existence is poor.

<u>Experiment</u>

- J-PARC consistent w/ one pole ۲ [Aikawa et al., PLB, **837** (2023)137637]
- Multi-experiment analysis w/ one pole ۲ [Anisovich et al., EPJA 56 (2020)56:139]
- BGOOD & ALICE w/ two poles ۲ [Scheluchin et al., PLB **833** (2022)137375] [Acharya et al., EPJC **83** (2023)340]
- Different CLAS analysis w/ two poles ۲ [Mai & Meißner, EPJA **51**(2015)30] [Roca & Oset, PRC **87**(2013)055201]
- GlueX analysis w/ two poles [Wickramaarachchi et al., 2209.06230]

Theory

- Simple SU(3) quark model w/ one pole [lsgur & Karl, PRD 18 (1978) 4187]
- Bag Model with Chirality w/ two poles [Fink et al., PRC **41** (1990) 2720]
- Chiral Unitarity approach w/ two poles [Mai, Eur. Phys. J. **230** (2021)10.1140]

Nature of the $\Lambda(1405)$

Lattice QCD Studies, none coupled-channel

Single-baryon three-quark fields [Gubler et al., PRD **94** (2016)114518] [Menadue et al., PRL **108** (2012)112001] [Engel et al., PRD 87 (2013) 034502] [Hall et al., PRL **114** (2015) 132002] [Nakajima et al., AIP **594** (2001) 349] [Nemoto et al., NPA **721** (2003) 879]

Nature of the $\Lambda(1405)$

Lattice QCD?

Insufficient to determine the Finite-Volume Spectrum!

[Lang & Verduci, PRD 87 (2013) 054502] [Mohler et al., PRD 87 (2013) 034501] [Wilson et al., PRD **92** (2015) 094502]

$N\pi$

[Bulava et al., BaSC, Nuc.Phys.B, 251402328]

 $KN - \Sigma\pi$

[Bulava et al., BaSc, PRL **132** (2024) 5] [Bulava et al., BaSc, PRD **109** (2024) 1]

$\Lambda(1405)$ from Lattice QCD

<u>Outline</u>

Nature of the Lambda (1405)

Lattice QCD

Resonance Analysis

Conclusions and Outlook

Phys. Rev. Lett. **132**, 051901 [arXiv:2307.10413] Phys. Rev. D **109**, 014511 [arXiv:2307.13471]

Discrete, Euclidean spacetime lattice:

$$L$$
, m_{π} , a

Calculate correlation functions using Monte Carlo

$$C_{L}(t) = \langle O(t)O^{\dagger}(0) \rangle \longrightarrow \int dU \, e^{-S_{g}} \det K$$

$$\sum_{n} |n\rangle \langle n|$$

$$C_{L}(t) = \sum_{n} Z_{n} Z_{n}^{\dagger} e^{-E_{n}t} \xrightarrow[t \to \infty]{} e^{-E_{0}t}$$

Extract finite-volume spectrum and map to physical observables Hadron Masses Matrix Elements Scattering Amplitudes

Lattice QCD

[Dudek et al., PRD 87 (2014)034505]

[Bruno et al., JHEP **02** (2015) 044] [Straßberger et al., arXiv:2112.06696]

$$a[fm]$$
 $(L/a)^3 \times (T)$
 $0.0633(4)(6)$ $64^3 \times 128$

- Heavier-than-physical degenerate u- and d-quarks, ۲ Lighter-than-physical s-quarks $N_f = 2 + 1$
- Tree-level improved Lüscher-Weisz gauge action ۲
- Non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermion action ۲
- 2000 gauge configurations Open temporal BCs ۲

Ensemble used called **D200** generated by Coordinated Lattice Simulations (CLS)

/ a)	m_{π}	m_K		
3	$pprox 200~{ m MeV}$	$pprox 487~{ m MeV}$		

Finite Volume Spectrum

- Time-to-time slice correlators Stochastic Laplacian-Heaviside Method [Morningstar et al., PRD 83 (2011)114505]
 - Quark smearing method to maximize overlap to onto finite-volume energy states
 - Use of single- and multi-hadron operators in each Irrep symmetry channel.
 - Construct large Hermitian correlation matrix ۲

Lattice QCD

 $\Lambda \left[G_{1u}(0) \right]$ $\pi[A_{1u}(0)] \sum [G_{1g}(0)]$ $\bar{K}[A_{1u}(0)] N[G_{1g}(0)]$ $\pi[A_{1u}(0)] \sum [G_{1g}(0)]$ $\bar{K}[A_2(1)] N[G_{1g}(0)]$

Symmetry Channel Total momentum Irreducible Rep of Cubic Group Strangeness lsospin

Finite Volume Spectrum

- Time-to-time slice correlators Stochastic Laplacian-Heaviside Method [Morningstar et al., PRD 83 (2011)114505]
 - Quark smearing method to maximize overlap to onto finite-volume energy states
 - Use of single- and multi-hadron operators in each Irrep symmetry channel.
 - Construct large Hermitian correlation matrix ۲
- Extraction of Energy Spectra Generalized Eigenvalue Problem (GEVP) [Blossier et al., JHEP **04** (2009) 094] $C_{ij}(t) = \langle O_i(t)O_j^{\dagger}(0) \rangle$

Lattice QCD

 $\Lambda \left[G_{1u}(0) \right]$ $\pi[A_{1u}(0)] \sum [G_{1g}(0)]$ $\bar{K}[A_{1u}(0)] N[G_{1g}(0)]$ $\pi[A_{1u}(0)] \sum [G_{1g}(0)]$ $\bar{K}[A_2(1)] N[G_{1g}(0)]$

Symmetry Channel Total momentum Irreducible Rep of Cubic Group Strangeness Isospin

$$C_{ij}(t) = N \begin{pmatrix} \pi & N & \cdots \\ \pi & \pi & \pi & N & \pi \\ N\pi & NN & \cdots \\ \vdots & \vdots & \vdots \end{pmatrix}$$

 $\searrow C(t) v_n = \lambda_n(t, t_0) C(t_0) v_n$ $\lambda_n(t, t_0) \ \checkmark e^{-E_n(t-t_0)} \xrightarrow{t \to \infty} E_n + O(e^{-\Delta E_n t})$

Energy Determinations

GEVP + Energy Shift from Ratio Fits

$$R_n(t) = \frac{C_{\text{meson-baryon}}(t)}{C_{\text{meson}}(t)C_{\text{baryon}}(t)} \longrightarrow \Delta E_n \longrightarrow E_{\text{la}}$$

- Reduced uncertainties and excited state contamination
- Can lead to false plateaus!
- Compare against multi-exponential ansatz
- Final fit criteria
 - $\chi^2/dof < 1.5$
 - Agreement of fit results with nearby t_{min}
 - Consistent with various fit forms and plateau region.

Lattice QCD

Lattice QCD

Finite-Volume Spectrum

Baryon FV Irreps

$\Lambda(d^2)$	(2II) content for $I < 2$
$\Lambda(\boldsymbol{a})$	$(2J, L)$ content for $L \leq 2$
$H_g(0)$	(3, 1)
$H_u(0)$	(3,2), (5,2)
$G_{1g}(0)$	(1, 1)
$G_{1u}(0)$	(1,0)
$G_{2g}(0)$	
$G_{2u}(0)$	(5,2)
$G_1(1), G_1(4)$	(1,0), (1,1), (3,1), (3,2), (5,2)
$G_2(1), G_2(4)$	(3, 1), (3, 2), (5, 2)
G(2)	(1,0), (1,1), (3,1), (3,2), (5,2)
$F_1(3)$	(3, 1), (3, 2), (5, 2)
$F_{2}(3)$	(3, 1), (3, 2), (5, 2)
<i>G</i> (3)	(1,0), (1,1), (3,1), (3,2), (5,2)

47 Energy Levels ۲

Lattice QCD

Finite-Volume Spectrum

Baryon FV Irreps

$\Lambda(d^2)$	(2LL) content for $L < 2$
$\frac{H(\mathbf{u})}{H(0)}$	$(20, 2) \text{ content for } 2 \leq 2$
$H_g(0)$	(3, 1)
$H_u(0)$	(3, 2), (5, 2)
$G_{1g}(0)$	(1, 1)
$G_{1u}(0)$	(1,0)
$G_{2g}(0)$	
$G_{2u}(0)$	(5,2)
$G_1(1), G_1(4)$	(1,0), (1,1), (3,1), (3,2), (5,2)
$G_2(1), G_2(4)$	(3, 1), (3, 2), (5, 2)
G(2)	(1,0), (1,1), (3,1), (3,2), (5,2)
$F_1(3)$	(3, 1), (3, 2), (5, 2)
$F_{2}(3)$	(3, 1), (3, 2), (5, 2)
<i>G</i> (3)	(1,0), (1,1), (3,1), (3,2), (5,2)

47 Energy Levels ۲

• S-wave
$$J^P = \frac{1}{2}^-$$
 analysis \longrightarrow 15 energy levels

$\Lambda(1405)$ from Lattice QCD

<u>Outline</u>

Nature of the Lambda (1405)

Lattice QCD

Resonance Analysis

Conclusions and Outlook

Phys. Rev. Lett. **132**, 051901 [arXiv:2307.10413] Phys. Rev. D **109**, 014511 [arXiv:2307.13471]

Multi-channel Two-particle Scattering Amplitude

[M. Lüscher, NPB **354** (1991) 53] [R. Briceño, PRD 89 (2014) 074507]

Resonance Analysis

 $egin{pmatrix} \pi\Sigma o \pi\Sigma & \pi\Sigma o Kp \ Kp o \pi\Sigma & \pi\Sigma o Kp \end{pmatrix}$

Multi-channel Two-particle Scattering Amplitude

[M. Lüscher, NPB **354** (1991) 53] [R. Briceño, PRD 89 (2014) 074507]

Resonance Analysis

 $egin{array}{ccc} (\pi\Sigma o \pi\Sigma & \pi\Sigma o Kp \ Kp o \pi\Sigma & Kp o Kp \end{array} \end{pmatrix}$

$$\det_{lm}\left[\tilde{K}(s) + F^{-1}(P,L)\right] = 0$$

- Determinant over matrix J, m_J, l, s, a (particle species)
- Valid below inelastic/three-particle threshold ۲
- Truncate l_{max} for analysis ۲ Keep s-wave Checked impact of higher partial waves

- K-matrix is real, symmetric, diagonal in total angular momentum J۲
- Test Parametrizations for K-matrix and its inverse (6) ۲
- Parameterizations are flexible enough to allow 0,1,2 poles ۲

Use **best-fit** to find pole positions as vanishing eigenvalues of inverse amplitude ۳ ${\cal T}^{\,-1}(E_{
m pole})=0$

Resonance Analysis

$$\left. + \underbrace{\begin{pmatrix} F_{\pi\Sigma}^{-1}(E_n, \vec{P}, L) & 0 \\ 0 & F_{\bar{K}N}^{-1}(E_n, \vec{P}, L) \end{pmatrix}}_{\text{Zeta Function}} \right] = 0$$

$$\begin{cases} \widetilde{K}_{ij} = \frac{m_{\pi}}{E_{\rm cm}} \left(A_{ij} + B_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \right) \\ \widetilde{K}_{ij} = \widehat{A}_{ij} + \widehat{B}_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \\ \widetilde{K}_{ij}^{-1} = \frac{E_{\rm cm}}{m_{\pi}} \left(\widetilde{A}_{ij} + \widetilde{B}_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \right) \\ \widetilde{K}_{ij} = \frac{\widehat{C}_{ij}}{m_{\pi}} \left(2E_{\rm cm} - M_i - M_j \right) \\ \vdots \end{cases}$$

$$\Delta_{\pi\Sigma}(E_{\rm cm}) = rac{E_{
m cm}^2 - (m_{\pi} + m_{\Sigma})^2}{(m_{\pi} + m_{\Sigma})^2},$$

Fitting the spectrum

Resonance Analysis

ude fit	lata	Ŀ
	ude	fit

- Fit shifts w.r.t. non-interacting energy levels $\Delta E_i = E_{
 m cm}^{
 m latt} - E_{
 m cm}^{
 m free}$ Minimize correlated χ^2 with residues ۲ $\delta_i = \Delta E_{\mathrm{cm},i} - \Delta E_{\mathrm{cm},i}^{\mathrm{QC}}$
- <u>Preferred fit based on lowest AIC</u> $\chi^2 2 dof$ ۲ **Akaike Information Criterion**

$$\tilde{K}_{ij} = \frac{m_{\pi}}{E_{\rm cm}} \left(\mathbf{A}_{ij} + \mathbf{B}_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \right)$$

4 parameters $B_{11} = B_{00} = 0$ (fixed) $\chi^2/{
m dof}=0.96$ 15 energies

Resonance Analysis

Scattering Transition Amplitude

$$t^{-1} = \widetilde{K}^{-1} - i\hat{k}$$

or
$$t = rac{m_{\pi}}{E_{
m cm} - E_{
m pole}} \begin{pmatrix} c_{\pi\Sigma}^2 & c_{\pi\Sigma} c_{\bar{K}N} \\ c_{\pi\Sigma} c_{\bar{K}N} & c_{\bar{K}N}^2 \end{pmatrix}$$

- Scattering Amplitude for all parametrization ۲ All find two poles!
 - one resonance and one virtual bound state
- Four different Riemann sheets

$$\begin{vmatrix} c_{\pi\Sigma}^{(1)} \\ c_{\bar{K}N}^{(1)} \end{vmatrix} = 1.9(4)_{\text{stat}}(6)_{\text{model}} \\ \frac{1}{\text{Stronger coupling to } \Sigma\pi}$$

Qualitative agreement with chiral approaches [PDG, Section 83]

 ${
m Re}\,E_1 = 1325 - 1380\,{
m MeV}$

 ${
m Re}~E_2 = 1421 - 1434\,{
m MeV}$

Resonance Analysis

Two poles with (sign Im $k_{\pi\Sigma}$, sign Im k_{KN}) = (- , +)

Resonance

$$E_2 = 1455(13)_{stat}(2)_{model}(17)_a$$

-*i*11.5(4.4)_{stat}(4.0)_{model}(0.1)_aMeV

$$egin{aligned} & \left| \frac{c_{\pi\Sigma}^{(2)}}{c_{\bar{K}N}^{(2)}}
ight| = 0.53(9)_{\mathrm{stat}}(10)_{\mathrm{model}} \ & \mathbf{Stronger\ coupling\ to\ KN} \end{aligned}$$

Lower pole on the real axis Unphysical pion mass effect

Resonance Analysis

Phase & Single Channel

- Rapid Increase in phase shift after $\Sigma \pi$ **Virtual State**
- ۲ Crosses 90 degrees Resonance

- Single Channel Lüscher Analysis Evidence of the lower pole as a virtual bound state
- Valid below the *KN* threshold ۲ Agreement with multi-channel analysis

 $E_1 = 1389(8)_{stat}(16)_a MeV$

$\Lambda(1405)$ from Lattice QCD

<u>Outline</u>

Nature of the Lambda (1405)

Lattice QCD

- Resonance Analysis
- Conclusions and Outlook

Phys. Rev. Lett. **132**, 051901 [arXiv:2307.10413] Phys. Rev. D **109**, 014511 [arXiv:2307.13471]

Pole Trajectories

Conclusion

1354

350

400

- First LQCD study of coupled-channel $KN \Sigma\pi$ scattering in $\Lambda(1405)$ region ۲
- We find for $m_{\pi} \sim 200 \, MeV$, a virtual bound state and a resonance ۲
 - $E_1 = 1392(9)_{stat}(2)_{model}(16)_a MeV$

•
$$E_2 = [1455(13)_{stat}(2)_{model}(17)_a - i11.5(4.4)]$$

- Each parametrization of amplitudes supports two-pole picture ۲
- Results agree with phenomenological extractions from chiral unitary models ۲
- <u>Outlook</u>
 - Explore quark mass dependence on poles: strange mass dependence
 - Explore impact of three-hadron operators
 - Calculations at the physical point (or near)

Conclusion

 $(4.0)_{stat}(4.0)_{model}(0.1)_{a}] MeV$

Once the correlators are generated and diagonalized, Fit forms are used to extract the finite-volume spectra (All are fit forms on the diagonal elements of the rotated correlators)

Effective Mass $\ln(C(t)/C(t+a))$ Hadron fits $[t_{min}, t_{max}]$ $t_{max} = 35a_{pion,kaon}$ $t_{max} = 25a_{hadrons}$

Multi-Hadron Energies

 $C(t) = \frac{1}{C_{\Delta}(t)}$ Ratio of correlators

- Channels $(A, B) = (\pi, \Sigma) \text{ or } (\overline{K}, N)$
- Solution Non-interacting energies $E_n^{\text{non. int.}} = \sqrt{m}$
- Single-exp ansatz for interaction shift
- Lab-frame energy $aE_n^{lab} = a\Delta E_n$

Finite-Volume Spectrum

$$D_n(t)$$

$$(\mathbf{d}_A^2, t) C_B(\mathbf{d}_b^2, t)$$

$$m_A^2 + \left(\frac{2\pi d_A}{L}\right)^2 + \sqrt{m_B^2 + \left(\frac{2\pi d_B}{L}\right)^2}$$

$$a\Delta E_{r}$$

$$+ aE_n^{non-int}$$

Resonance Analysis

3. An ERE of \widetilde{K}^{-1} of the form

$$\widetilde{K}_{ij}^{-1} = \frac{E_{\rm cm}}{m_{\pi}} \left(\widetilde{A}_{ij} + \widetilde{B}_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}) \right).$$
(15)

4. A Blatt-Biederharn 84 parametrization:

$$\widetilde{K} = C \ F \ C^{-1},\tag{16}$$

where

$$C = \begin{pmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{pmatrix}, \tag{17}$$

$$F = \begin{pmatrix} f_0(E_{\rm cm}) & 0\\ 0 & f_1(E_{\rm cm}) \end{pmatrix}, \qquad (18)$$

and

$$f_i(E_{\rm cm}) = \frac{m_\pi}{E_{\rm cm}} \frac{a_i + b_i \Delta_{\pi\Sigma}(E_{\rm cm})}{1 + c_i \Delta_{\pi\Sigma}(E_{\rm cm})}.$$
 (19)

Fit

$$A_{00}$$

 a
 0.092(2)

 b
 0.114(2)

 c
 0.137(3)

Fit	a_0	a_1	b_0	b_1	c_0	c_1	ϵ	$\chi^2/{ m dof}$	AIC
a	5.7(1.2)	-11.4(1.2)		-27(15)			0.451(56)	13.27/(15-4)	-8.73
b	13.7(4.1)	-14.06(86)	-37(17)				0.349(75)	10.63/(15-4)	-11.37
с	5.8(1.2)	-11.8(1.1)				-1.62(95)	0.468(48)	13.54/(15-4)	-8.46
d	12.2(3.4)	-14.06(87)			5.8(3.2)		0.360(82)	11.13/(15-4)	-10.87

Other fits

TABLE X. Fit results for \widetilde{K} parametrization class 3 shown in Eq. (15). Errors are propagated through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers to Akaike Information Criterion.

	\widetilde{A}_{11}	\widetilde{A}_{01}	\widetilde{B}_{00}	\widetilde{B}_{11}	\widetilde{B}_{01}	$\chi^2/{ m dof}$	AIC
1)	-0.036(15)	0.082(20)	0.28(15)			11.73/(15-4)	-10.27
5)	-0.041(24)	0.096(19)		0.19(16)		14.57/(15-4)	-7.43
3)	-0.019(14)	0.119(21)			-0.142(85)	13.10/(15-4)	-8.90

TABLE XI. Fit results for \widetilde{K} parametrization class 4 shown in Eq. (16). Errors are propagated through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers to Akaike Information Criterion.

Check for effect of higher partial waves using leves in nontrivial irreps

Parametrize p-wave K-matrix with simple form

$${ ilde K}^{J^P} = ext{diag}\left(A^{J^P}_{00}, A^{J^P}_{11}
ight).$$

Impact on s-wave parameters is negligible

TABLE XII. Fit results for \tilde{K} parametrization class 1 shown in Eq. (13) for the $J^P = 1/2^-$ wave, and Eq. (32) for the $J^P = 1/2^+, 3/2^+$ waves using $\ell_{\text{max}} = 1$. Errors are propagated through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers to Akaike Information Criterion.

J^P partial waves	A_{00}	A_{11}	A_{01}	B_{01}	$A_{00}^{1/2^+}$	$A_{11}^{1/2^+}$	$A_{00}^{3/2^+}$	$A_{11}^{3/2^+}$	$\chi^2/{ m dof}$	AIC
$1/2^{-}$	4.1(1.2)	-10.5(1.1)	10.3(1.3)	-29(15)					10.52/(15-4)	-11.48
$1/2^{-}$ and $1/2^{+}$	4.1(1.2)	-10.5(1.1)	10.3(1.3)	-30(15)	0.0088(39)	0.031(15)			10.52/(17-6)	-11.48
$1/2^{-}$ and $3/2^{+}$	4.1(1.1)	-10.9(1.1)	10.4(1.3)	-32(15)			0.0172(48)	0.0218(48)	14.10/(21-6)	-15.90

Single Hadron Masses

Effective Range Expansion (ERE)

Fit	A_{00}	A_{11}	A_{01}	<i>B</i> ₀₀	B ₁₁	<i>B</i> ₀₁
a	1.5(1.4)	-8.78(72)	8.30(65)			
b	4.1(1.2)	-10.5(1.1)	10.3(1.3)			-29(1
с	2.3(1.3)	-8.62(58)	7.60(80)		-18(11)	,
d	15.1(5.3)	-11.8(1.3)	7.6(1.3)	-56(19)		
e	9.6(6.2)	-12.7(3.4)	11.1(2.8)	-23(26)	18(31)	-37(2

Resonance Analysis

 $AIC = \chi^2 - 2n_{d.o.f.}$

$$\tilde{K}_{ij} = \frac{m_{\pi}}{E_{\rm cm}} (A_{ij} + B_{ij} \Delta_{\pi\Sigma}(E_{\rm cm}))$$

$$I = input data$$

$$I = amplitude fit$$

$$I = \pi \pi \Lambda$$

$$I = I$$

$$KN$$

$$det_{lm} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

$$Im_{R} \left[\tilde{K}(s) + F^{-1}(P, L) \right] = 0$$

Correlation Matrices

- Single-hadrons built w/ Laplacian-Heaviside smeared quark fields LapH Method [Peardon et al., PRD 80 (2009) 054506]
- Time-to-time slice correlators of multi-hadron operators in larger volumes w/ Stochastic Laplacian-Heaviside [Morningstar et al., PRD 83 (2011)114505]
- \odot Obtain $N \times N$ Hermitian correlation matrices projected to quantum numbers of the lattice

Correlation Matrices

Define time-slice to time-slice operators

 $C_{ij}(t_f - t_0) = \sum \left\langle O_{\Lambda,\lambda,n}^{\mathbf{P}}(t_f) O_{\Lambda,\lambda,n}^{\mathbf{P}}(t_i) \right\rangle$

[Morningstar et al., PRD 88 (2013) 014511]

Lattice QCD

Finite Volume Irreps

group

d n o L o c b c l

J	irreps, $\Lambda(\dim)$
$\frac{1}{2}$	$G_1(2)$
$\frac{3}{2}$	H(4)
$\frac{5}{2}$	$H(4)\oplus G_2(2)$
$\frac{7}{2}$	$G_1(2)\oplus H(4)\oplus G_2(2)$
$\frac{9}{2}$	$G_1(2)\oplus {}^1H(4)\oplus {}^2H(4)$

Group	$ \mathbf{p}L/2\pi ^2$	Г	l
$\overline{O_h}$	0	A_1^+	0, 4
		A_2^+	>4
		$ar{E^+}$	2, 4
		T_1^+	4
		T_2^+	2, 4
$C_{4 u}$	1	A_1	0, 2,4
		A_2	>4
		B_1	2, 4
		B_2	2, 4
		E	2, 4
$C_{2 u}$	2	A_1	0, 2, 4
		A_2	2, 4
		B_1	2, 4
		B_2	2, 4
$C_{3 u}$	3	A_1	0, 2, 4
		A_2	>4
		E	2, 4

