Challenges in amplitude analyses for heavy-meson spectroscopy at LHCb

Jonas Rademacker on behalf of LHCb

Eric (yesterday):

These days are over.

Jonas Rademacker (University of Bristol)

Eric (yesterday):

These days are over.

They are not.

Time dependent CPV in charm

CP violation if $|q/p| \neq 1$ or $\varphi_{CP} \neq 0$ (or π)

Superpositions of D^0 and \overline{D}^0 form particles with well-defined mass and width. Mass and width difference parametrised by $x = \frac{\Delta m}{\overline{\Gamma}}$ and $y = \frac{\Delta \Gamma}{2\overline{\Gamma}}$

Amplitude Analyses at LHCb

Jonas Rademacker (University of Bristol)

Charm mixing in 2007

Charm mixing in 2013

Charm mixing in 2015

Charm mixing in 2018

Charm mixing in 2021

non-zero x at > 5σ

What was that??? LHCb model-independent mixing with $D^0 \to K_{\rm S} \pi^+ \pi^-$

Charm mixing in 2023

Two body modes measure final-state-dependent x', y', which are x, y rotated by the strong phase difference between $D^0 \to f_D$ and $\overline{D}^0 \to f_D$

The magic of Amplitude Analyses measures this phase at the same time as $x,y, \|q/p\|, \phi_{CP}$

Jonas Rademacker (University of Bristol)

Two body modes measure final-state-dependent x', y', which are x, y rotated by the strong phase difference between $D^0 \to f_D$ and $\overline{D}^0 \to f_D$

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} \cos\delta & \sin\delta\\ -\sin\delta & \cos\delta\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right)$$

The magic of Amplitude Analyses measures this phase at the same time as $x,y, \|q/p\|, \phi_{CP}$

Jonas Rademacker (University of Bristol)

Charm mixing in 2018

Charm mixing in 2021

non-zero x at > 5σ

LHCb charm data are clean and plentiful

The "bin-flip" method ensures that many systematic uncertainties largely cancel.

Methods is based on (time-dependent) ratios of yields in CP-conjugate bins with identical kinematics.

Binned analysis with BES III input removes amplitude model dependence

Binned analysis with BES III input removes amplitude model dependence

Details in my talk, yesterday

Same BESIII input also crucial for model-independent γ

Large CP violation in $B^+ \rightarrow 3$ hadrons (π^{\pm} or K^{\pm})

See also: LHCb: PRL 112 (2014) 1, 011801, PRD 90 (2014) 11, 112004, PRL 123 (2019) 23, 231802, PRL 124 (2020) no.3, 031801, PRD101 (2020) no.1, 012006, BELLE: PRD 96 (2017) 3, 031101

Jonas Rademacker (University of Bristol)

Large CP violation in $B^+ \rightarrow 3$ hadrons (π^{\pm} or K^{\pm})

Jonas Rademacker (University of Bristol)

Large CP violation in $B^+ \rightarrow 3$ hadrons (π^{\pm} or K^{\pm})

See also: LHCb: PRL 112 (2014) 1, 011801, PRD 90 (2014) 11, 112004, PRL 123 (2019) 23, 231802, PRL 124 (2020) no.3, 031801, PRD101 (2020) no.1, 012006, BELLE: PRD 96 (2017) 3, 031101

Jonas Rademacker (University of Bristol)

$B^+ \rightarrow$ 3 hadrons (π^{\pm} or K^{\pm})

LHCb: PRD 108 (2023) 1, 012008

$B^+ \rightarrow 3$ hadrons (π^{\pm} or K^{\pm})

LHCb: PRD 108 (2023) 1, 012008

$B^+ \rightarrow$ 3 hadrons (π^{\pm} or K^{\pm})

LHCb: PRD 108 (2023) 1, 012008

Models with model-independent components

 $D^+_{(s)} \rightarrow \pi^+ \pi^- \pi^+$

$D_s^+ o \pi^+ \pi^- \pi^+$									
³ ³ ² ² ^{1.5} ¹ ¹ ^{0.5}	$LHCb = 500$ $1.5 \text{ fb}^{-1} = 400$ 300 30								
	Fit Fraction (FF) [%]								
S-wave $\rho(770)^0$ $\omega(782)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								
$\frac{\rho(1450)^0}{\rho(1700)^0}$ combined	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								
$\frac{f_2(1270)}{f_2'(1525)}$	$\begin{array}{rrrr} 13.69 \pm & 0.14 \pm & 0.22 \pm 0.49 \\ 0.0528 \pm & 0.0070 \pm & 0.015 \pm 0.0087 \end{array}$								

LHCb: <u>JHEP 06 (2023) 044</u> LHCb: <u>JHEP 07 (2023) 204</u>

Component	Fit fraction $[\%]$					
$ \rho(770)^0 \pi^+ $	26.0	± 0.3	± 1.6	± 0.3		
$\omega(782)\pi^+$	0.103	± 0.008	± 0.014	± 0.002		
$\rho(1450)^0\pi^+$	5.4	± 0.4	± 1.3	± 0.8		
$\rho(1700)^0\pi^+$	5.7	± 0.5	± 1.0	± 1.0		
$f_2(1270)\pi^+$	13.8	± 0.2	± 0.4	± 0.2		
S-wave	61.8	± 0.5	± 0.6	± 0.5		

 $D_{(s)}$ $\rightarrow \pi^+\pi^-\pi^+$

LHCb: <u>JHEP 06 (2023) 044</u> LHCb: <u>JHEP 07 (2023) 204</u>

Component	Fit fraction $[\%]$					
$ \rho(770)^0 \pi^+ $	26.0	± 0.3	± 1.6	± 0.3		
$\omega(782)\pi^+$	0.103	± 0.008	± 0.014	± 0.002		
$\rho(1450)^0\pi^+$	5.4	± 0.4	± 1.3	± 0.8		
$\rho(1700)^0\pi^+$	5.7	± 0.5	± 1.0	± 1.0		
$f_2(1270)\pi^+$	13.8	± 0.2	± 0.4	± 0.2		
S-wave	61.8	± 0.5	± 0.6	± 0.5		

 $D_{(s)}$ $\rightarrow \pi^+\pi^-\pi^+$

LHCb: JHEP 06 (2023) 044 LHCb: JHEP 07 (2023) 204

Jonas Rademacker (University of Bristol)

 $D^+ \rightarrow \pi^+ \pi^- \pi^+$

LHCb: JHEP 06 (2023) 044

Quasi model-independent (QMI) $\pi^+\pi^-$ S-wave in $D^+ \to \pi^+\pi^-\pi^+$

Blue point with error bars: fit result at given mass point, with stat error Green band: 2-D cubic spline with sys and stat errors

Jonas Rademacker (University of Bristol)

 $D_{\rm s}^+ \to \pi^+ \pi^- \pi^+$

LHCb: <u>JHEP 07 (2023) 204</u> BESIII: <u>PRD 106 (2022) 11, 112006</u>. BaBar: <u>PRD 79 (2009) 032003</u>.

$D_s^+, D^+ \rightarrow \pi^+ \pi^- \pi^+$ and scattering data

Comparing $\pi^+\pi^-$ S-wave in $D_s, D^+ \to \pi^+\pi^-\pi^+$ with that obtained from scattering data.

Scattering data: CERN-Munich experiment, Nucl. Phys. B64 (1973) 134, and re-analysis of those data by J Ochs, J. Phys. G: Nucl. Part. Phys. 40 043001. Below 0.4GeV from NA48/2: Eur. Phys. J. C70 (2010) 635.

LHCb: PRD 108 (2023) 3, 032010

- $K\pi$ S-wave described with model independent method (bins with one complex number per bin)
- *a*₀(980) described by coupled channel formula following PRD 57, 3860 (1998) (Christal Barrel).
- Other resonances: Breit-Wigner

LHCb: PRD 108 (2023) 3, 032010

- $K\pi$ S-wave described with model independent method (bins with one complex number per bin)
- *a*₀(980) described by coupled channel formula following PRD 57, 3860 (1998) (Christal Barrel).
- Other resonances: Breit-Wigner

$B^+ \rightarrow K_S K^{\mp} \pi^{\pm} K^+$, the $K \pi$ S-wave

LHCb: PRD 108 (2023) 3, 032010

$B^+ \rightarrow K_S K^+ \pi^{\pm} K^+$, the $K\pi$ S-wave

LHCb: PRD 108 (2023) 3, 032010

Amplitude Analyses at LHCb

$B^+ \rightarrow K_S K^{\mp} \pi^{\pm} K^+$, the $K\pi$ S-wave

LHCb: PRD 108 (2023) 3, 032010

in lack of constraints for model-independent method

Amplitude Analyses at LHCb

$B^+ \rightarrow K_S K^{\mp} \pi^{\pm} K^+$ with model-dependent S-wave

• B→K*⁰μ+μ⁻

- B→K*⁰μ+μ⁻
- $B^+ \rightarrow K^+ \mu^+ \mu^-$

- B→K*⁰μ+μ⁻
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-

- B→K*⁰μ+μ⁻
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- B→K*⁰μ+μ⁻
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

- B→K*⁰μ+μ-
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

all involve same process:

- B→K*⁰μ+μ-
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

all involve same process:

- B→K*⁰μ+μ-
- $B^+ \rightarrow K^+ \mu^+ \mu^-$
- B_s→фµ+µ-
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

all involve same process:

$B^0 \to D^0 \overline{D}{}^0 K^+ \pi^-$ for $B^0 \to \mu^+ \mu^- K^*$

 $B^0 \rightarrow D^0 \overline{D}{}^0 K^+ \pi^-$

Analysis of $B^0 \rightarrow D^0 \overline{D}{}^0 K^+ \pi^$ will provide further input on charm loops

First step: first observation of this rare decay PRD102,051102(2020) 4-body Amplitude Analysis ongoing.

$B^0 \to D^0 \overline{D}{}^0 K^+ \pi^-$ for $B^0 \to \mu^+ \mu^- K^*$

Analysis of
$$B^0 \rightarrow D^0 \overline{D}{}^0 K^+ \pi^-$$

will provide further input on
charm loops

Only one of many reasons to study the amplitude structure of $B \rightarrow D\overline{D}X$ decays, which turn out to be remarkably rich.

First step: first observation of this rare decay PRD102,051102(2020) 4-body Amplitude Analysis ongoing.

72 new hadrons at the LHC, 64 of which at LHCb

See also yesterday's talk by Da Yu Tou on spectroscopy with Pentaquarks

Plot by Patrick Koppenburg: <u>https://www.nikhef.nl/~pkoppenb/particles.html</u>

Amplitude Analyses at LHCb

Really strange: First tetra flavour

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

$B^+ \rightarrow D^+ D^- K^+$ Dalitz Plot

Two $\chi_c(3930)$

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

$B^+ \rightarrow D^+ D^- K^+$ Dalitz Plot

 $B^+ \rightarrow D_s^+ D_s^- K^+$

LHCb: PRL 131 (2023) 7, 071901

 $B^+ \rightarrow D_s^+ D_s^- K^+$

LHCb: PRL 131 (2023) 7, 071901

$$R(m \mid M_0, g_j) = \frac{1}{M_0^2 - m^2 - iM_0 \sum_j g_j \rho_j(m)}$$

(Component	J^{PC}	$M_0 \; ({\rm MeV})$	$\Gamma_0 \ ({\rm MeV})$	${\cal F}~(\%)$	${\cal S} \; (\sigma)$
\rightarrow	X(3960)	0^{++}	$3956 \pm 5 \pm 10$	$43 \pm 13 \pm 8$	$25.4 \pm 7.7 \pm 5.0$	12.6(14.6)
	$X_0(4140)$	0^{++}	$4133 \pm 6 \pm 6$	$67\pm17\pm7$	$16.7 \pm 4.7 \pm 3.9$	3.8~(4.1)
BW	$> \psi(4260)$	1	$4230 \ [60]$	$55 \ [60]$	$3.6\pm0.4\pm3.2$	3.2 (3.6)
	• $\psi(4660)$	1	4633 [32]	64 [32]	$2.2\pm0.2\pm0.8$	3.0(3.2)
	NR	0^{++}	-	-	$46.1 \pm 13.2 \pm 11.3$	3.1(3.4)

If this X(3960) is $\chi_{c0}(3930)$, then:

$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}^{(1)} \,\mathcal{F}_X^{(1)}}{\mathcal{B}^{(2)} \,\mathcal{F}_X^{(2)}} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$$

 $B^+ \rightarrow D_s^+ D_s^- K^+$

LHCb: PRL 131 (2023) 7, 071901

Dip could be caused by a new $X_0(4140)$. Alternative description is

with a K-matrix for the X(3950) where the opening of a $J/\psi\phi$ threshold causes the dip.

Fit prefers $X_0(4140)$ by 6 units in $\Delta \ln(\mathscr{L})$ (for one additional dof), but situation remains inconclusive

PRL 131 (2023) 4, 041902 $B^0 \to \overline{D}{}^0 D_s^+ \pi^- \& B^+ \to D^- D_s^+ \pi^+$ PRD 108 (2023) 1, 012017

No evidence for additional $D_{(s)}^*$ resonances. Tried many, seen and unseen, with variable masses, widths and various spins. No sign of $D_{s0}(2317)^0$ and $D_{s0}(2317)^{++}$, hypothesised* isotriplet partners of $D_{s0}(2317)^+$

 *) PLB566 (2003) 193, PLB578 (2004) 365, PRD70 (2004) 096011, PRD86 (20012) 016006, PRL94 (2005) 016006, PRD71 (2005) 014028

 Jonas Rademacker (University of Bristol)
 Amplitude Analyses at LHCb
 PWA/ATHOS 2024, Williamsburg VA 42

 $M(D^-D_s^+)$ (GeV)

$$J^P = 0^+$$

 $M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.013 \,\text{GeV}$

 $T^*_{c\bar{s}0}(2900)^0: M = 2.892 \pm 0.014 \pm 0.015 \text{ GeV}$ $\Gamma = 0.119 \pm 0.026 \pm 0.013 \text{ GeV}$ $T^*_{c\bar{s}0}(2900)^{++}: M = 2.921 \pm 0.017 \pm 0.020 \text{ GeV}$ $\Gamma = 0.137 \pm 0.032 \pm 0.017 \text{ GeV}$

Amplitude Analyses at LHCb

 $B^+ \rightarrow D^{*-} D_s^+ \pi^+$ LHCb: arXiv:2405.00098 (2024) ϕ_D $m^2(D_s^+\pi^+)$ [GeV²] (a) LHCb $LHCb 9 fb^{-1}$ 10 $9 {\rm ~fb^{-1}}$ 29 8 0 6 55 8 6 10 -1.0-0.50.00.51.0εV $m^2(D^{*-}\pi^+)$ [GeV²] $\cos \theta_D$

 $B^+ \rightarrow D^{*-}D_s^+\pi^+$

LHCb: arXiv:2405.00098 (2024)

Jonas Rademacker (University of Bristol)

Amplitude Analyses at LHCb
$$B^{+} \to D^{*-}D^{+}\pi^{+}, B^{+} \to D^{*+}D^{-}\pi^{+}_{LHCb-PAPER-2023-047}$$

$$C$$

$$A^{D^{*-}D^{+}\pi^{+}}(x) = \sum_{j \in R(D^{*\pm}D^{\mp})} c_{j}A_{j}(x) + \sum_{k \in R(D^{*-}K^{+}, D^{+}K^{+})} c_{k}A_{k}(x)$$

$$A^{D^{*+}D^{-}\pi^{+}}(x) = \sum_{j \in R(D^{*\pm}D^{\mp})} C_{j} \times c_{j}A_{j}(x) + \sum_{l \in R(D^{*+}K^{+}, D^{-}K^{+})} c_{l}A_{l}(x)$$

Resonances in $D^{*-}D^+$ related to those in $D^{*+}D^-$ by C-parity, $R_J(D^{*-}D^+) = C_J \cdot R_J(D^{*+}D^-)$

$B^+ \to D^{*\mp} D^{\pm} \pi^+$

LHCb-PAPER-2023-047

				LHCb-prel	İn '
Component	$I^{P(C)}$	Fit fraction $(\%)$	Fit fraction($\%$)	Branching fraction	'' ^{IIN} ary
Component	0	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$(\times 10^{-4})$	
$\mathrm{EFF}_{1^{++}}$	1^{++}	$10.9 {}^{+2.3}_{-1.2} {}^{+1.6}_{-2.1}$	$9.9 {}^{+2.1 +1.4}_{-1.0 -1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$	
$\eta_c(3945)$	0^{-+}	$3.4 {}^{+0.5}_{-1.0} {}^{+1.9}_{-0.7}$	$3.1^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$	
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$	
$h_c(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$	
$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm0.06$	
$\psi(4040)$ [†]	1	$2.8 {}^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6 {}^{+0.5}_{-0.4} {}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$	
$h_c(4300)$	1^{+-}	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1 {}^{+0.2}_{-0.5} {}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm0.01$	
$T^*_{\bar{c}\bar{s}0}(2900)^{0}$ [†]	0^{+}	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	_	$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm 0.04$	
$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1^{-}	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	—	$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$	
$\overline{\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})}$	1	$20.4^{+2.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$	
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2 {}^{+0.6}_{-0.1} {}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$	
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$	
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm 0.09$	

Total NR FF ~ 50%

$B^+ \to D^{*\mp} D^{\pm} \pi^+$

LHCb-PAPER-2023-047

				LHCb-proli	
Component	$J^{P(C)}$	Fit fraction(%)	Fit fraction(%)	Branching fraction	ninar
component	0	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$(\times 10^{-4})$	
$EFF_{1^{++}}$	1++	$10.9^{+2.3}_{-1.2}{}^{+1.6}_{-2.1}$	$9.9 {}^{+2.1 +1.4}_{-1.0 -1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$	
$\eta_c(3945)$	0^{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$	
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$	
$h_{c}(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$	
$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm0.06$	
$\psi(4040)$ [†]	1	$2.8 {}^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6 {}^{+0.5}_{-0.4} {}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$	
$h_{c}(4300)$	1^{+-}	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm0.01$	
$T^*_{ar{c}ar{s}0}(2900)^{0\ \dagger}$	0^+	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	—	$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm 0.04$	
$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1-	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	—	$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$	
$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4^{+2.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$	
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2 {}^{+0.6}_{-0.1} {}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$	
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}	$17.8 {}^{+1.9}_{-1.4} {}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$	
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm 0.09$	

Total NR FF ~ 50%

$B^+ \to D^{*\mp} D^{\pm} \pi^+$

LHCb-PAPER-2023-047

					LHCb-prei	in '
_	Component	$\mathbf{I}P(C)$	Fit fraction $(\%)$	Fit fraction $(\%)$	Branching fraction	''' ^{IIN} ary
	Component	J	$B^+ \to D^{*+}D^-K^+$	$B^+ \to D^{*-}D^+K^+$	$(\times 10^{-4})$	
	$\mathrm{EFF}_{1^{++}}$	1^{++}	$10.9 {}^{+2.3}_{-1.2} {}^{+1.6}_{-2.1}$	$9.9 {}^{+2.1}_{-1.0} {}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$	
	$\eta_c(3945)$	0^{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1 {}^{+0.5}_{-0.9} {}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$	
	$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$	
	$h_c(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$	
	$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm0.06$	
	$\psi(4040)^{\dagger}$	1	$2.8 {}^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6 {}^{+0.5}_{-0.4} {}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$	
	$h_c(4300)$	1^{+-}	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm0.01$	
_	$T^*_{\bar{c}\bar{s}0}(2900)^{0\ \dagger}$	0^{+}	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	-	$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm 0.04$	
	$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1^{-}	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	_	$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$	
_	$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4^{+2.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$	
	$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2 {}^{+0.6}_{-0.1} {}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$	
	$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$	
	$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm 0.09$	

Total NR FF ~ 50%

3 new (or disguised?) charmonium-like resonances

3 new (or disguised?) charmonium-like resonances

$\mathrm{EFF}_{1^{++}}$	1^{++}
$\eta_c(3945)$	0^{-+}
$\chi_{c2}(3930)^{\dagger}$	2^{++}
$h_c(4000)$	1+-
$\chi_{c1}(4010)$	1++
$\psi(4040)$ [†]	1
$h_c(4300)$	1^{+-}

Only interference between states with the same J^P but different C, and reflections from $T^*_{cs0,1}(2900)^0$, have significant contributions

Meike Küßner, earlier today

One Prominent Example: The Lightest Hybrid Candidate

- one at around 1.4 GeV only seen in $\pi\eta$
- the other at around 1.6 GeV seen in πη' but not in πη
- Parameters obtained by Breit-Wigner fits!
 - Theory: Only one π1 state predicted slightly below 2 GeV

Did we fall into the same trap with our $h_c(4000)$, $\chi_{c1}(4010), h_c(4300)$? If so, what did we really observe?

3 new (or disguised?),charmonium-like resonances

This werk	[Known states [6] -	cē prediction [34]
$\eta_c(3945)$ $J^{PC} \equiv 0.001$	4. $X(3940)$ [9] $J^{PC} = ?^{??}$	$\eta_{ m e}(3S) = J^{PC} = 0^{-1}$
$m_0 \neq 3945 \pm \frac{28}{17} \pm \frac{37}{28}$ $\Gamma_0 = 13$	$\Gamma_{0} = 3942 \pm 9$ $\Gamma_{0} = 37 \pm 7$	$\Gamma_{0}=40640$ $\Gamma_{0}=80$
$h_{c}(4000)$	$J^{PC} = 2^{2}$	$T_{\mathbf{N}}(2P)$ $T_{\mathbf{J}}^{PC} = 1^{-1}$
$m_0 arrow 4000 arrow 17 arrow 29 arrow 10 arrow 1$	$n_0 = 4025.5 \pm 2.9 \pm 3.1 \pm 0.4$ $\pm 3.1 \pm 0.4$	$m_0 = 3956$ $\mathbf{F}_0 = 87$
$\chi_{c1}(1,1,2,2,2,3,3,3,3,3,3,3,3$		$\mathbf{x} = \{2, \mathbf{y}, $
$m_0 \stackrel{\text{\tiny def}}{=} 40125 \stackrel{\text{\tiny 13.6}}{_{-3.9}} \stackrel{\text{\tiny 14.1}}{_{-3.7}} \Gamma_0 = 62.7 \stackrel{\text{\tiny +7.0}}{_{-6.4}} \stackrel{\text{\tiny +6.4}}{_{-6.6}}$		m_0 = 3953 Γ_0 = 165
$h_c(4300)$ $J^{PC} = 1^{-1}$		$h_c(3P)$ $J^{PC}=1^{+1}$
$m_0=4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$ - $\Gamma_0=58^{+28}_{-16}{}^{+28}_{-25}$	4. , III x III - IIII - III - III	$m_0 = 4318$ $\Gamma_0 = 75$
	\mathbf{I}	

LHCb-preliminary $\frac{1}{10}$ $\frac{1$

3 new (or disguised?) charmonium-like resonances

LHCb-PAPER-2023-047

This work		Known states [6]		$c\bar{c}$ prediction [34]	
$\eta_c(3945)$	$J^{PC} = 0^{-+}$	X(3940) [9]	$J^{PC} = ?^{??}$	$\eta_c(3S)$	$J^{PC} = 0^{-+}$
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130 {}^{+92}_{-49} {}^{+101}_{-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37^{+27}_{-17}$	$m_0 = 4064$	$\Gamma_0 = 80$
$h_c(4000)$	$J^{PC} = 1^{+-}$	X(4020) [35]	$J^{PC} = ?^{?-}$	$h_c(2P)$	$J^{PC} = 1^{+-}$
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 4025.5 {}^{+2.0}_{-4.7} \pm 3.1$	$\Gamma_0 = 23.0 \pm 6.0 \pm 1.0$	$m_0 = 3956$	$\Gamma_0 = 87$
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P)$	$J^{PC} = 1^{++}$
$m_0 = 4012.5 {}^{+3.6}_{-3.9} {}^{+4.1}_{-3.7}$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$			$m_0 = 3953$	$\Gamma_0 = 165$
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P)$	$J^{PC} = 1^{+-}$
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$			$m_0 = 4318$	$\Gamma_0 = 75$
		$\chi_c(4274)$ [36]	$J^{PC} = 1^{++}$	$\chi_{c1}(3P)$	$J^{PC} = 1^{++}$
LHCb-prelimin	arv	$m_0 = 4294 \pm 4^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317$	$\Gamma_0 = 39$

- [6] Particle Data Group, R. L. Workman et al., Review of particle physics, Prog. Theor. Exp. Phys. 2022 (2022) 083C01, and 2023 update.
- [9] Belle collaboration, P. Pakhlov *et al.*, Production of new charmoniumlike states in $e^+e^- \rightarrow J/\psi D^{(*)}\bar{D}^{(*)}$ at $\sqrt{s} \approx 10$ GeV, Phys. Rev. Lett. **100** (2008) 202001,

like state $Z_c(4025)^0$ in $e^+e^- \to (D^*\bar{D}^*)^0\pi^0$, Phys. Rev. Lett. **115** (2015) 182002.

[35] BESIII collaboration, M. Ablikim et al., Observation of a neutral charmonium-

- [34] T. Barnes, S. Godfrey, and E. S. Swanson, *Higher charmonia*, Phys. Rev. D72 (2005) 054026, arXiv:hep-ph/0505002.
- [36] LHCb collaboration, R. Aaij *et al.*, Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$, Phys. Rev. Lett. **127** (2021) 082001, arXiv:2103.01803.

Jonas Rademacker (University of Bristol)

Amplitude Analyses at LHCb

3 new (or disguised?) charmonium-like resonances

- [6] Particle Data Group, R. L. Workman et al., Review of particle physics, Prog. Theor. Exp. Phys. 2022 (2022) 083C01, and 2023 update.
- [34] T. Barnes, S. Godfrey, and E. S. Swanson, *Higher charmonia*, Phys. Rev. D72 (2005) [35] BESIII collaboration, M.
- [36] LHCb collaboration, R. Aaij *et al.*, Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$, Phys. Rev. Lett. **127** (2021) 082001, arXiv:2103.01803.
- [9] Belle collaboration, P. Pakhlov *et al.*, Production of new charmoniumlike states in $e^+e^- \rightarrow J/\psi D^{(*)}\bar{D}^{(*)}$ at $\sqrt{s} \approx 10$ GeV, Phys. Rev. Lett. **100** (2008) 202001,
- [35] BESIII collaboration, M. Ablikim *et al.*, Observation of a neutral charmoniumlike state $Z_c(4025)^0$ in $e^+e^- \rightarrow (D^*\bar{D}^*)^0\pi^0$, Phys. Rev. Lett. **115** (2015) 182002.

Jonas Rademacker (University of Bristol)

054026, arXiv:hep-ph/0505002.

Amplitude Analyses at LHCb

 $\Lambda_h^0 \to p K^- \gamma$

52k $\Lambda_b^0 \rightarrow p K^- \gamma$ events (6.9k run I and 45.6k run II - plots run 2 only)

 $\Lambda_h^0 \to p K^- \gamma$

 $\Lambda_b^0 \to p K^- \gamma$

 $\Lambda_h^0 \to p K^- \gamma$

You can find this model on Misha + Ilya's amplitude serialisation site: <u>https://rub-ep1.github.io/amplitude-</u> <u>serialization/julia/lb2pkg.html</u>

Challenges (in lieu of conclusions)

- Too much high quality data: Huge, clean datasets allow high precision measurements
 - Needs high-quality models
 - Or model-independent methods. (However, "model-independent" methods usually still need models as input, e.g. for optimisation better models mean better (statistical) precision, here, too. In some cases, models are needed to give meaning to model-independent results)
 - Numerically challenging
- Perennial challenge: how to build (sufficiently) good models and when to stop
 - Parametrisation of threshold enhancements, rescattering, triangle diagrams, ...
 - If we see new resonances in a ∑ BW analysis how confident can we be they are real and new? How can we do better? How much better is good enough?
 - How to complete an amplitude analysis within duration of PhD?
 - Analysis reproducibility
- Interpretation of what we've seen what are all those new structures?

Backup

Illustration of what we are worried about regarding the $h_c(4000), \chi_{c1}(4010), h_c(4300)$:

B. Kopf, M. Albrecht, H. Koch, **M. Küßner**, J. Pychy, X. Qin and U. Wiedner, Eur. Phys. J. C 81, no.12, 1056 (2021) These two structures in $\eta\pi$ and $\eta'\pi$ are can be described by the same complex pole in a K-matrix analysis, but would yield different masses/width in a BW analysis. Did we fall into the same trap? How can we find out?

Also: what about the role of the description of the threshold enhancement in this context?

3 new (or disguised?) charmonium-like resonances

$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$ projections and 2-D pull

Figure 5: The folded Dalitz plot projections (left) s_{high} and (right) s_{low} .

Figure 6: (Left) The unfolded Dalitz plot projection s_{13} ; (right) the folded distribution of the normalised residuals across the Dalitz plot.

Phase[°]

LHCb 1.5 fb⁻¹

25 E

IOS 2024, Williamsburg VA 65

LHCb

1.5 fb⁻¹

$B^+ \rightarrow$ 3 hadrons (π^{\pm} or K^{\pm})

LHCb: PRD 108 (2023) 1, 012008

Jonas Rademacker (University of Bristol)

Amplitude Analyses at LHCb

 $D^{+}_{(s)}$ $\rightarrow \pi^+\pi^-\pi^+$

LHCb: <u>JHEP 06 (2023) 044</u> LHCb: <u>JHEP 07 (2023) 204</u>

 $D^+ \rightarrow \pi^+ \pi^- \pi^+$

Jonas Rademacker (University of Bristol)

Amplitude Analyses at LHCb

Really strange: First tetra flavour

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

X(2900) region

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

First tetra flavour confirmation with modelindependent analysis.

LHCb: PRL 125 (2020) 242001

Null hypothesis: Charmonium resonances up to spin 2 **can** explain the structure seen in m(DK)

First tetra flavour confirmation with modelindependent analysis.

LHCb: PRL 125 (2020) 242001

First tetra flavour confirmation with modelindependent analysis.

LHCb: PRL 125 (2020) 242001

 $\chi_{cJ}(3930)$ region

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

The missing bit

LHCb: <u>PRL 125 (2020) 242001</u> LHCb: <u>PRD 102 (2020) 112003</u>

$B^+ \rightarrow D^{*\mp} D^{\pm} \pi^+$

Re-found the 2	$T^*_{cs0,1}(2900)^0$
----------------	-----------------------

Re-found the I	$c_{s0,1}^{*}(2900)^{\circ}$	LHCb-preliminary
Property	This work	Previous work
$T^*_{cs0}(2900)^0$ mass (MeV)	$2914 \pm 11 \pm 15$	2866 ± 7
$T^*_{cs0}(2900)^0$ width (MeV)	$128 \pm 22 \pm 23$	57 ± 13
$T^*_{cs1}(2900)^0$ mass (MeV)	$2887 \pm 8 \pm 6$	2904 ± 5
$T_{cs1}^{*}(2900)^{0}$ width (MeV)	$92 \pm 16 \pm 16$	110 ± 12
$\mathcal{B}(B^+ \to T^*_{cs0}(2900)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm0.4)\times10^{-5}$	$(1.2 \pm 0.5) \times 10^{-5}$
$\mathcal{B}(B^+ \to T^*_{cs1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7}_{-1.0}{}^{+1.6}_{-1.1}\pm0.3)\times10^{-5}$	$(6.7 \pm 2.3) \times 10^{-5}$
$\frac{\mathcal{B}(B^+ \to T^*_{cs0}(2900)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{cs1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05

Normal (polar) Vector

Normal (polar) Vector

Jonas Rademacker (University of Bristol)

$B^+ \rightarrow$ 3 hadrons (π^{\pm} or K^{\pm})

LHCb: PRD 108 (2023) 1, 012008

What provides the strong phase in $A_{CP} \propto \sin(\Delta \phi_{weak}) \sin(\Delta \delta_{strong})$?

where the Δ indicates the phase differences between two interfering amplitudes contributing to the process; $\Delta \phi_{weak}$ changes sign under CP, $\Delta \delta_{strong}$ does not.

For low mass region, where large CPV is observed, $KK \leftrightarrow \pi\pi$ rescattering could play a key role (see <u>Phys.Rev.D 89 (2014) 9, 094013</u>)