PHYSICAL REVIEW D 106, 114513 (2022)

Radiative decay of the resonant K^* and the $\gamma K \rightarrow K \pi$ amplitude from lattice QCD

Archana Radhakrishnan⁽⁰⁾,^{1,2,*} Jozef J. Dudek⁽⁰⁾,^{1,2,†} and Robert G. Edwards⁽⁰⁾,^{2,‡}

(for the Hadron Spectrum Collaboration)

$\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

Jozef Dudek

hadron spectrum collaboration hadspec.org for example

low energy pion photoproduction, $\gamma N \rightarrow \pi N$ in which the Δ resonance appears

meson resonance production in semileptonic heavy-flavor decays, e.g. $B \rightarrow \ell \ell K^* \rightarrow \ell \ell K \pi$

or things not easily measurable but of theoretical interest, $\gamma\{\omega, \phi\} \rightarrow \{\pi\pi, K\bar{K}\}$

 $f_0(980)$ flavor content & spatial size ?

can compute with lattice QCD – **finite-volume** matrix elements from three-point functions

"large" finite-volume corrections controlled by the hadron-hadron scattering amplitude complication of presence of multiple J^P owing to cubic boundary

WILLIAM & MARY $\gamma K \rightarrow \pi K$ and the

current induced transitions to hadron-hadron resonances

can compute with lattice QCD – **finite-volume** matrix elements from three-point functions

"large" finite-volume correctionscomplication of presence ofcontrolled by the hadron-hadronmultiple J^P owing to cubicscattering amplitudeboundary

to date, only concrete application to $\gamma\pi \to \pi\pi$

but $\pi\pi$ is "special", no $J^P = 0^+$ with isospin=1, so $J^P = 1^-$ is always lowest partial wave

current induced transitions to hadron-hadron resonances

can compute with lattice QCD – finite-volume matrix elements from three-point functions

"large" finite-volume corrections controlled by the hadron-hadron scattering amplitude complication of presence of multiple J^P owing to cubic boundary

4

next simplest case $\gamma K \rightarrow \pi K$

WILLIAM & MARY

 πK with isospin= $\frac{1}{2}: 0^+ (\kappa''), 1^- (K^*), \dots$

no amplitude $\gamma K \rightarrow (\pi K)_{0^+}$ but still an effect from 0^+ in finite-volume ...

the process of interest is

current + stable hadron → resonance → hadron-hadron pair

actually don't really need there to be a resonance

e.g. $\gamma K \rightarrow \pi K$ in a *P*-wave

after the current produces $K\pi$...

 $\dots K\pi$ strongly rescatters

 $\mathcal{H}(Q^2, E_{K\pi}^{\star}) \equiv \langle K | j | K\pi; E_{K\pi}^{\star} \rangle$

suppressing kinematic variables, helicity and lorentz indices

$$= \mathscr{A}(Q^2, E_{K\pi}^{\star}) \cdot \frac{1}{k_{K\pi}^{\star}} \cdot \mathscr{M}^{\ell=1}(E_{K\pi}^{\star})$$

removing an 'excess' P-wave threshold factor

unitarity insists that production amplitude, \mathscr{A} , is **real** in the region of interest

(free of singularities, polynomial in $(E_{K\pi}^{\star})^2$)

Omnès function also an option here

★ means cm-frame

WILLIAM & MARY

the process of interest is

current + stable hadron \rightarrow resonance \rightarrow hadron-hadron pair

e.g. $\gamma K \rightarrow \pi K$ in a *P*-wave

WILLIAM & MARY

$$\mathcal{H}(Q^2, E_{K\pi}^{\star}) \equiv \langle K | j | K\pi; E_{K\pi}^{\star} \rangle$$
$$= \mathcal{A}(Q^2, E_{K\pi}^{\star}) \cdot \frac{1}{k_{K\pi}^{\star}} \cdot \mathcal{M}^{\ell=1}(E_{K\pi}^{\star})$$

strong scattering amplitude, \mathcal{M} , can have resonance poles

$$\mathscr{M}^{\ell=1}(s) \sim \frac{c_R^2}{s_0 - s}$$

$$= m_R - i \frac{1}{2} \Gamma_R$$

hence
$$\mathscr{H}(Q^2, s) \sim \frac{c_R f(Q^2)}{s_0 - s}$$

 $\sqrt{s_0}$

lattice QCD means a finite-volume

continuum of scattering states $\mathscr{M}(E^{\star})$

infinite volume

WILLIAM & MARY

finite volume discrete spectrum of states $E_n(L)$

 $E_n(L)$ are solutions of $\det \left| \frac{F^{-1}(E^{\star};L) + \mathcal{M}(E^{\star})}{E} \right| = 0$

7

kinematic finite-volume functions

spectra obtained from two-point correlation functions $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle$

evaluate with a large basis of operators to form a matrix

and diagonalize $\mathbf{C}(t) v_n = \lambda_n(t, t_0) \mathbf{C}(t_0) v_n$

eigenvalues given energies $\lambda_n(t,t_0) \sim e^{-E_n(t-t_0)}$

eigenvectors give optimal operators

 $\Omega_n \sim \sum_i (v_n)_i \mathcal{O}_i$

produce just one state in the 'tower'

can transition to any energy in the $\pi\pi$ continuum

WILLIAM & MARY

can only transition to one of the discrete f.v. eigenstates

finite-volume matrix element $_{L}\langle \pi | j | \pi \pi; E_{n}^{\star} \rangle_{L}$

single hadron state

$$|\pi\rangle_L \sim |\pi\rangle_\infty + \mathcal{O}(e^{-m_\pi L})$$

hadron-hadron state

$$|\pi\pi; E_n^{\star}\rangle_L \sim \sqrt{\tilde{R}_n} |\pi\pi; E_{\pi\pi}^{\star} = E_n^{\star}\rangle_{\infty}$$

effective f.v. normalization

c.f. "Lellouch-Lüscher" factor

8

$$\tilde{R}_n(L) \equiv 2E_n \cdot \lim_{E \to E_n} \left(E - E_n \right) \left(F^{-1}(E^*; L) + \mathcal{M}(E^*) \right)^{-1}$$

effective f.v. normalization depends on the scattering amplitude

cubic nature of lattice puts spectra in irreducible representations of a reduced group of rotations

in $\pi\pi$ case, this has limited impact because even and odd ℓ are in different isospins consequence of Bose symmetry

in πK case, there is no Bose symmetry

$\mathbf{p}_{K\!\pi}\Lambda$	$ [000]A_1^+$	$ [000]T_1^-$	$ [100]A_1$	$[100]E_2$	$ [110]A_1$	$ [110]B_1$	$[110]B_1$	$[111]A_1$	$[111]E_2$	$ [200]A_1$
$\ell \leq 2$	0	1	0, 1, 2	1, 2	0, 1, 2	1, 2	1, 2	0, 1, 2	1,2	0, 1, 2

spectrum in some irreps sensitive to scattering in both $\ell = 0, \ell = 1$

finite-volume spectrum \rightarrow *S*,*P*-wave amplitudes

Jefferson Lab

ccelerator Facility

 $m_{\pi} \sim 284 \,\mathrm{MeV}$

 $\ell=2$ found to be negligible in this energy region

 $a_t E^{\star} [100] A_1$

0.18

 $[110] A_1$

relation between finite-volume matrix element, and infinite-volume matrix element, ${\mathscr H}$

$$\left| {}_{L} \langle K | j | K \pi \rangle_{L} \right| \propto \left(\mathcal{H} \cdot \tilde{R}_{n} \cdot \mathcal{H} \right)^{1/2}$$

where the residue of the finite-volume hadron-hadron propagator appears

$$\tilde{R}_n(L) \equiv 2E_n \cdot \lim_{E \to E_n} \left(E - E_n \right) \left(\underbrace{F^{-1}(E^*;L)}_{\text{matrix in } \ell = 0,1} + \underbrace{\mathscr{M}(E^*)}_{\text{diagonal matrix in } \ell = 0,1} \right)^{-1}$$

 $E_n(L)$ are solutions of det $\left[F^{-1}(E^*;L) + \mathcal{M}(E^*)\right] = 0$

WILLIAM & MARY

relation between finite-volume matrix element, and infinite-volume matrix element, ${\mathscr H}$

$$\left| {}_{L}\langle K | j | K \pi \rangle_{L} \right| \propto \left(\mathcal{H} \cdot \tilde{R}_{n} \cdot \mathcal{H} \right)^{1/2}$$

where the residue of the finite-volume hadron-hadron propagator appears

$$\tilde{R}_n(L) \equiv 2E_n \cdot \lim_{E \to E_n} \left(E - E_n \right) \left(\frac{F^{-1}(E^*;L)}{\operatorname{matrix} \operatorname{in} \ell = 0,1} + \frac{\mathscr{M}(E^*)}{\operatorname{diagonal}} \right)^{-1}$$

$$\operatorname{matrix} \operatorname{in} \ell = 0,1$$

using an eigen-decomposition
$$F + \mathcal{M}^{-1} = \sum_{i} \mu_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{\mathsf{T}}$$
 $\mathbf{w}_{i} = \begin{pmatrix} \mathbf{w}_{i}^{\ell=0} \\ \mathbf{w}_{i}^{\ell=1} \end{pmatrix}$
the residue factorizes $\tilde{R}_{n} = \begin{pmatrix} -\frac{2E_{n}^{\star}}{\mu_{0}^{\star'}} \end{pmatrix} \mathcal{M}^{-1} \mathbf{w}_{0} \underbrace{\mathbf{w}_{0}^{\mathsf{T}} \mathcal{M}^{-1}}_{\text{zero crossing eigenvalue}}$ eigenvector

only the zero-crossing eigenvalue is relevant

WILLIAM & MARY

relation between finite-volume matrix element, and infinite-volume matrix element, ${\mathcal H}$

$$\left|_{L}\langle K|j|K\pi\rangle_{L}\right| \propto \left(\mathscr{H}\cdot\tilde{R}_{n}\cdot\mathscr{H}\right)^{1/2}$$

where the residue of the finite-volume hadron-hadron propagator appears

$$\tilde{R}_n(L) \equiv 2E_n \cdot \lim_{E \to E_n} \left(E - E_n \right) \left(\frac{F^{-1}(E^*;L)}{\text{matrix in } \ell = 0,1} + \frac{\mathscr{M}(E^*)}{\text{diagonal}} \right)^{-1}$$

using an eigen-decomposition $F + \mathcal{M}^{-1} = \sum_{i} \mu_{i} \mathbf{w}_{i} \mathbf{w}_{i}^{\mathsf{T}}$

the residue f

Factorizes
$$\tilde{R}_n = \left(-\frac{2E_n^{\star}}{\underline{\mu_0^{\star'}}}\right) \mathcal{M}^{-1} \mathbf{w}_0 \underbrace{\mathbf{w}_0^{\mathsf{T}}}_{\text{zero cross}}$$

eigenvalue

sing or

and the net finite-volume correction is $F(Q^2, E_{K\pi}^{\star} = E_n^{\star}) = \frac{1}{\tilde{r}_n(L)} F_L(Q^2, E_n^{\star})$

remember, no $\gamma K \rightarrow (K\pi)_{\ell=0}$ amplitude

where
$$\tilde{r}_n(L) = \sqrt{-\frac{2E_n^{\star}}{\mu_0^{\star'}}} \left| \mathbf{w}_0^{\ell=1} \right| \frac{1}{k_{K\pi}^{\star}}$$

 $\mathscr{H} = \mathscr{A} \cdot \frac{1}{k_{K\pi}^{\star}} \cdot \mathscr{M}^{\ell=1}$ $\mathscr{A} = \underline{K} \cdot \underline{F}$ kinematic form-factor factor

WILLIAM & MARY

$$F(Q^2, E_{K\pi}^{\star} = E_n^{\star}) = \frac{1}{\tilde{r}_n(L)} F_L(Q^2, E_n^{\star})$$

extract finite-volume form-factor, $F_L(Q^2, E_n^{\star})$, from lattice QCD computed three-point functions

compute the finite-volume corrections, $\tilde{r}_n(L)$, using lattice QCD obtained scattering amplitudes

$$\tilde{r}_n(L) = \sqrt{-\frac{2E_n^{\star}}{\mu_0^{\star'}}} \left| \mathbf{w}_0^{\ell=1} \right| \frac{1}{k_{K\pi}^{\star}}$$

ccelerator Facility

three-point functions

$$0 \left| \Omega_{K}(\mathbf{p}_{K}, \Delta t) j(\mathbf{q}, t) \Omega_{K\pi}^{\dagger}(\mathbf{p}_{K\pi}, 0) \right| 0 \right\rangle = e^{-E_{K}(\Delta t - t)} e^{-E_{n}t} \cdot K \cdot F_{L}(Q^{2}, E_{n}^{\star}) + \dots ,$$

just a single $\Delta t = 32 a_t$

a range of kaon and current three-momenta for each kaon-pion discrete energy level

 $F_L(t)$

COVID-lockdown-era project

WILLIAM \mathscr{C} MARY

three-point functions - our kinematical coverage

$$\langle 0 | \Omega_K(\mathbf{p}_K, \Delta t) j(\mathbf{q}, t) \Omega_{K\pi}^{\dagger}(\mathbf{p}_{K\pi}, 0) | 0 \rangle = e^{-E_K(\Delta t - t)} e^{-E_n t} \cdot K \cdot F_L(Q^2, E_n^{\star}) + \dots ,$$

just a single $\Delta t = 32 a_t$

a range of kaon and current three-momenta for each kaon-pion discrete energy level

WILLIAM & MARY

finite-volume form-factor

$$\frac{1}{\tilde{r}_n(L)}F_L(Q,E_n^{\star})$$

 $a_t^2 Q^2$

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

17

finite-volume correction factors

WILLIAM & MARY

finite-volume form-factor

$$\frac{1}{\tilde{r}_n(L)}F_L(Q^2_{\cdot}E_n^{\star})$$

 $a_t^2 Q^2$

infinite-volume form-factor

WILLIAM & MARY

modest energy dependence as expected

 $a_t^2 Q^2$ 21

global fitting of all the infinite-volume form-factor data

 $F(Q^2, s) = \left(b_{0,0} + b_{0,1} \frac{s - s_0}{s_0}\right) + b_{1,0} \cdot \left(z(Q^2) - z(0)\right) + b_{2,0} \cdot \left(z(Q^2) - z(0)\right)^2$ energy dependent conformal mapping fit here $[200]A_1 \# 0$ $[110]B_1 \# 0$ 0.04 0.04 0.04 0.02 0.02 0.02 0.01 0.01 0.02 0.02 $[100]A_1 \# 0$ 0.04 $[111]E_2 \# 0$ 0.04 0.04 0.02 0.02 0.02 0.01 0.01 0.02 0.02 $[110]A_1 \# 0$ $[110]A_1 \# 1$ 0.04 0.04 0.04 0.02 0.02 0.02 0.01 0.02 0.01 0.02 $[111]A_1 \# 0$ $[000]T_1^- \# 0$ 0.04 0.04 0.04 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0 0 () $[200]A_1 \# 1$ $[100]E_2 \# 0$ 0.04 -0.04 0.04 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0 0 0 $[100]A_1 \# 1$ $[200]E_2 \# 0$ 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0 0 0 WILLIAM & MARY $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

128 data points, 4 free params

0.01

0.01

0.01

0.01

0.01

₫

0.01

₫

Jefferson Lab

夏豆

 $[110]B_2 \# 0$

0.02

 $[111]A_1#1$

0.02

 $[100]A_1 \# 2$

0.02

 $[200]A_1 \# 2$

0.02

 $[110]A_1 \# 2$

0.02

 $[111]A_1 \# 2$

0.02

ccelerator Facility

global fitting of all the infinite-volume form-factor data

modest energy dependence as expected

energy dependent conformal mapping fit here $F(Q^2, s) = \left(b_{0,0} + b_{0,1}\frac{s - s_0}{s_0}\right) + b_{1,0} \cdot \left(z(Q^2) - z(0)\right) + b_{2,0} \cdot \left(z(Q^2) - z(0)\right)^2$

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

WILLIAM & MARY

parameterization variation

WILLIAM & MARY

real photon cross-section

$$\left| \mathscr{H} \left(\gamma K^+ \to K^+ \pi^0 \right) \right| = \frac{1}{\sqrt{3}} \left| \mathscr{H} \left(\gamma K^+ \to (K\pi)_{1/2,+1/2} \right) \right|. \qquad \qquad \sigma \left(\gamma K^+ \to K^+ \pi^0 \right) = \frac{1}{3} \alpha \frac{k_{K_{\gamma}}^{\star}}{k_{K_{\pi}}^{\star}} \frac{1}{m_K^2} \left| F \mathscr{M} \right|^2$$

WILLIAM & MARY

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

Jefferson Lab

experimental determination

(very forward production of πK using K^{\pm} , K_L^0 beams on nuclear targets)

pdg average of a couple of experiments $\Gamma(K^{*\pm} \to K^{\pm}\gamma) = 50(5) \text{ keV}$

 $\Gamma(K^{*0} \to K^0 \gamma) = 116(10) \,\mathrm{keV}$

$$\frac{d\sigma}{dt\,dm} = 3\pi\alpha Z^2 \frac{\Gamma_o}{k_o^3} \frac{t - t_{\min,o}}{t^2} |f_{C_o}|^2 BW(m);$$

$$BW(m) = \frac{1}{\pi} \frac{m^2 \Gamma^{tot}}{[m^2 - m_o^2] + [m_o \Gamma^{tot}]^2} |\frac{g(k)}{g(k_o)}|^2$$

 $f |_{\text{this is not the pole residue}}^2$

 $|f_{\rm pdg}| = 0.206(10)$

 ${\tt J}^{f_{\rm pdg}}$

Jefferson Lab

$$\Gamma(K^{*+} \to K^+ \gamma) = \frac{4}{3} \alpha \frac{k_{K\gamma}^{\star 3}}{m_K^2} |f|^2$$

WILLIAM & MARY

stress-tested the $1+J\rightarrow 2$ finite-volume formalism in a case with an 'unwanted' lower partial wave

similar formalism describes **coupled-channels** see **Felipe Ortega**'s talk (tomorrow) for an application

consistent production amplitude at 128 kinematic points, shows expected mild energy dependence

*K** transition form-factor extracted from scattering resonance pole,

reasonable ball-park agreement with experiment (considering computation at 'wrong' light quark mass)

other approaches & motivations

dispersive approach (Dax, Stamen, Kubis)

parameterized *t*-channel amplitudes

inputs:

s-channel $K\pi$ scattering – Omnès from elastic phase-shift

"free" params: dispersion subtraction constants (one or two)

Yn

ω,φ

Yn

π

a crude extrapolation – assume constant couplings

hadronic width
$$\Gamma_R = 3 \cdot \Gamma(K^+ \pi^0) = 3 \cdot \frac{2}{3} \frac{k_{K\pi}^{\star 3}}{m_R^2} |\hat{c}_R|^2 = 42(3) \text{ MeV}$$

radiative width $\Gamma(K^{*+} \rightarrow K^+ \gamma) = \frac{4}{3} \alpha \frac{k_{K_Y}^{\star 3}}{m_K^2} |f_R(0)|^2 = 40(6) \text{ keV}$

WILLIAM \mathcal{C} MARY

pdg

K*(892) [±]	hadroproduced full width Γ = 51.4 \pm 0.8 MeV
K*(892) [±]	in $ au$ decays full width $\Gamma=$ 46.2 \pm 1.3 MeV

 $\Gamma(K^{*\pm} \to K^{\pm}\gamma) = 50(5) \,\mathrm{keV}$

describing the Q^2 dependence – finite-volume form-factors

simple, singularity-free, parameterizations

"exp poly"

$$F_L(Q^2) = f_{0L} \cdot \exp\left[-\sum_{n=1}^N a_n \left(\frac{Q^2}{4m_\pi^2}\right)^n\right]$$

"conformal mapping"

$$F_{L}(Q^{2}) = \sum_{n=0}^{N} b_{nL} \left(z(Q^{2}) - z(0) \right)^{n}$$

$$z(Q^{2}) = \frac{\sqrt{Q^{2} + t_{cut}} - \sqrt{Q_{0}^{2} + t_{cut}}}{\sqrt{Q^{2} + t_{cut}} + \sqrt{Q_{0}^{2} + t_{cut}}}$$

$$t_{cut} = (2m_{\pi})^{2}$$

$$a_{t}^{2} Q_{0}^{2} = 0.0035$$

$$f_{0L} \exp\left[-a_1 \frac{Q^2}{4m_{\pi}^2} - a_2 \left(\frac{Q^2}{4m_{\pi}^2}\right)^2\right] \qquad \qquad f_{0L} \exp\left[-a_1 \frac{Q^2}{4m_{\pi}^2}\right] \quad a_t^2 Q^2 < 0.015$$
$$= \sum_{n=0}^2 b_{nL} \left(z(q^2) - z(0)\right)^n \qquad \qquad \sum_{n=0}^1 b_{nL} \left(z(q^2) - z(0)\right)^n \quad a_t^2 Q^2 < 0.015$$

 $\sum_{n=0}^{\infty} b_{nL} \left(z(q^2) - z(0) \right)^n$ $\sum_{n=0} b_{nL} (z(q^2$ F_L $K\pi [111]A_1 \# 0$ 0.15 0.10 0.05 0 0.005 0.010 0.015 0.020 $a_t^2 Q^2$ F_L $K\pi [110]B_1 \# 0$ 0.25 0.20 0.15 $\frac{41.2}{11-3}$ $\frac{36.8}{8-2} = 6.1$ 0.10 $\frac{41.8}{11-3} = 5.2$ $\frac{34.5}{8-2} = 5.8$ 0.05 0.015 0.005 0.010 $a_t^2 Q^2$ 0 0.020 F_L $K\pi [110]A_1\#1$ 0.15 $\frac{28.7}{10-3} = 4.2$ 0.10 $\frac{26.7}{7-2} = 5.3$ $\frac{26.3}{10-3} = 3.8$ $\frac{23.8}{7-2} = 4.8$ 0.05 $a_t^2 Q^2$ 0.005 0.010 0.015 0.020 0 F_L 0.25 $K\pi [110]B_2 \# 0$ 0.20 0.15 $\frac{82.2}{11-3} = 10.3$ $\frac{78.9}{8-2} = 13.2$ 0.10 $\frac{84.0}{11-3} = 10.5$ $\frac{78.2}{8-2} = 13.0$ 0.05 $a_t^2 Q^2$ 0 0.005 0.010 0.015 0.020 F_L $K\pi [110]A_1 \# 2$ 0.15 $\frac{40.7}{10-3} = 5.8$ 0.10 $\frac{8.22}{7-2} = 1.6$ $\frac{39.7}{10-3} = 5.7$ $\frac{7.69}{7-2} = 1.5$ 0.05 $\overline{a_t^2}Q^2$ 0.005 0.010 0.015 0.020 0

Jefferson Lab

Accelerator Facility

WILLIAM & MARY

energy dependence after finite volume correction

WILLIAM & MARY

modest energy dependence over a broad energy region

33

$$\left\langle r^2 \right\rangle_{K^{*+},K^+} \equiv \frac{1}{f_R(0)} \cdot \left(-6 \frac{d}{dQ^2} f_R(Q^2) \right) \bigg|_{Q^2 = 0}$$

Re
$$\langle r^2 \rangle_{K^{*+},K^+}^{1/2} = 0.69(4) \,\text{fm}$$
 $\langle r^2 \rangle_{K^+}^{1/2} = 0.55(2) \,\text{fm}$

needs some thought on how to use this information ...

currents

$$j_{\text{em,phys}} = Z_V^l \left(\frac{1}{\sqrt{2}} j_{\rho,\text{lat}} + \frac{1}{3\sqrt{2}} j_{\omega_l,\text{lat}} \right) + Z_V^s \left(-\frac{1}{3} j_{\omega_s,\text{lat}} \right)$$
$$j_\rho \equiv \frac{1}{\sqrt{2}} \left(\bar{u} \Gamma u - \bar{d} \Gamma d \right), j_{\omega_l} \equiv \frac{1}{\sqrt{2}} \left(\bar{u} \Gamma u + \bar{d} \Gamma d \right), j_{\omega_s} \equiv \bar{s} \Gamma s$$

We compute a set of three-point functions based upon the following choices:

- at t = 0, an optimized operator corresponding to each black point in Figure 1, having any allowed lattice rotation of the specified momentum. If the irrep is more than one-dimensional, all rows are considered;
- at all $0 \le t/a_t \le 32$ a spatial current insertion having momentum [000], [100], [110], [111] or [200] (and *not* rotations of these specific directions). Rather than three cartesian directions for the current, the subductions of a vector for the relevant momentum are used;
- at $\Delta t/a_t = 32$, an optimized operator for a kaon with a momentum $\leq [211]$, with all allowed lattice rotations considered.

$$\bar{\psi}\Gamma\psi = \bar{\psi}\gamma_i\psi + \frac{1}{4}(1-\xi)a_t\partial_4(\bar{\psi}\sigma_{4i}\psi)$$

Jefferson Lab

ccelerator Facility

WILLIAM & MARY

$\langle 0 | \Omega_{K}(\mathbf{p}_{K}, \Delta t) j(\mathbf{q}, t) \Omega^{\dagger}_{K\pi}(\mathbf{p}_{K\pi}, 0) | 0 \rangle$

" $K\pi$ " optimized operators feature both

current lands on strange quarks and light quarks

completely disconnected contributions neglected

zero in the SU(3) flavor limit, also OZI arguments suggest small

vector current renormalizations determined non-perturbatively using pion and kaon form-factors at $Q^2 = 0$ tree-level improved current for anisotropic action used (typically modest effect)

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

ccelerator Facility

timesjice2fitting

$F_{L}(t) \equiv e^{E_{K}(\Delta t - t)} \cdot e^{E_{n}t} \cdot \frac{1}{K} \cdot \langle 0 | \Omega_{K}(\Delta t) j(t) \Omega_{K\pi}^{\dagger}(0) | 0 \rangle$

$$F_L + a_{\rm src} e^{-\delta E_{\rm src}t} + a_{\rm snk} e^{-\delta E_{\rm snk}(\Delta t - t)}$$

K[110]

varying fit ranges, source & sink exponentials

celerator Facility

WILLIAM & MARY

example timeslice fitting

WILLIAM & MARY

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

 $K\!\pi\,[110]A_1\#0$

K[210]

0.03

Jefferson Lab

0.05

0.07

Accelerator Facility

38

data correlation issues

128 data points, 348 configurations – how well determined is the data correlation ?

WILLIAM & MARY

data correlation

WILLIAM & MARY

finite-volume correction and data correlation

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

WILLIAM & MARY

fit, then average

averaging 'equivalent' correlation functions

WILLIAM & MARY

$$\mathscr{A}^{\mu}_{\lambda_{K\pi}}(\mathbf{p}_{K},\mathbf{p}_{K\pi};Q^{2},E_{K\pi}^{\star})=\frac{2}{m_{K}}\epsilon^{\mu\nu\rho\sigma}(\mathbf{p}_{K})_{\nu}(\mathbf{p}_{K\pi})_{\rho}\epsilon_{\sigma}(\mathbf{p}_{K\pi},\lambda_{K\pi})\cdot F(Q^{2},E_{K\pi}^{\star})$$

$$\left(K^{\mu} F \sqrt{16\pi} \, \hat{c}_R\right) \cdot \frac{1}{\left(m_R - i\Gamma_R/2\right)^2 - E_{K\pi}^{\star 2}} \cdot \left(\sqrt{16\pi} \, \hat{c}_R \, k_{K\pi}^{\star}\right)$$

$$f_R(Q^2) \equiv F(Q^2, m_R - i\frac{1}{2}\Gamma_R) \cdot \sqrt{16\pi} \,\hat{c}_R$$

WILLIAM & MARY

$$\frac{\overline{C}}{\overline{C}} = \frac{62}{58} \begin{bmatrix} 62 \\ 58 \\ 54 \\ 52 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix}$$

finite-volume correction parameterization variation

	Jefferson Lab									
• • • • • • • • • • • • • • • • • • •	ł	ł	ł	ł	ł	ł				
♀ ♀ ♀ ♀] <i>A</i> 1#2	ł	I	ł	ł	ł	ł				
₽₽₽₽]A ₁ #2	ł	I	ł	ł	ł	ł				
$]A_1 \# 2$	I	I	Τ	I	Τ	I				

WILLIAM & MARY

For the choices $BW_{a...f}$ the *P*-wave amplitude is a Breit-Wigner,

$$\mathcal{M}^{\ell=1}(s) = \frac{16\pi}{\rho(s)} \frac{\sqrt{s}\,\Gamma(s)}{m_{\rm BW}^2 - s - i\sqrt{s}\,\Gamma(s)}\,,\quad \Gamma(s) = g_{\rm BW}^2 \frac{k^{\star 3}}{s}\,,$$

where $m_{\rm BW},\,g_{\rm BW}$ are free parameters. The S-wave amplitudes are

$$\begin{split} \mathcal{M}_{\mathsf{a}}^{\ell=0}(s) &= \frac{16\pi}{\left(\gamma_{0} + \gamma_{1}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right)\right)^{-1} + I_{\mathrm{thr}}(s)} \,, \\ \mathcal{M}_{\mathsf{b}}^{\ell=0}(s) &= \frac{16\pi}{\left(\gamma_{0} + \gamma_{1}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right) + \gamma_{2}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right)^{2}\right)^{-1} + I_{\mathrm{thr}}(s)} \,, \\ \mathcal{M}_{\mathsf{c}}^{\ell=0}(s) &= \frac{16\pi \left(s - s_{A}\right)}{\left(\gamma_{0} + \gamma_{1}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right)\right)^{-1} - i\rho(s)\left(s - s_{A}\right)} \,, \\ \mathcal{M}_{\mathsf{d}}^{\ell=0}(s) &= \frac{16\pi}{\left(\gamma_{0} + \gamma_{1}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right)\right)^{-1} - i\rho(s)} \,, \\ \mathcal{M}_{\mathsf{e}}^{\ell=0}(s) &= \frac{16\pi \left(s - s_{A}\right)}{\gamma_{0} + \gamma_{1}\left(\frac{s-s_{\mathrm{thr}}}{s_{\mathrm{thr}}}\right) + I_{\mathrm{thr}}(s)\left(s - s_{A}\right)} \,, \\ \mathcal{M}_{\mathsf{f}}^{\ell=0}(s) &= \frac{16\pi}{\rho(s)} \frac{k^{\star}}{a^{-1} + \frac{1}{2}rk^{\star 2} - ik^{\star}} \,, \end{split}$$

$$\mathcal{M}^{\ell=0}(s) = \frac{16\pi}{\left(\gamma_0 + \gamma_1\left(\frac{s-s_{\rm thr}}{s_{\rm thr}}\right)\right)^{-1} + I_{\rm thr}(s)},$$

$$\begin{split} \mathcal{M}_{g}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{g^{2}}{m^{2}-s} + \gamma_{0}\right)^{-1} + I_{\text{pole}}(s)} \\ \mathcal{M}_{h}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{g^{2}}{m^{2}-s} + \gamma_{0} + \gamma_{1}\left(\frac{s-s_{\text{thr}}}{s_{\text{thr}}}\right)\right)^{-1} + I_{\text{pole}}(s)} \\ \mathcal{M}_{i}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{\left(g_{0}+g_{1}\frac{s-s_{\text{thr}}}{s_{\text{thr}}}\right)^{2}}{m^{2}-s}\right)^{-1} + I_{\text{pole}}(s)} \\ \mathcal{M}_{j}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{\left(g_{0}+g_{1}\frac{s-s_{\text{thr}}}{s_{\text{thr}}}\right)^{2}}{m^{2}-s} + \gamma_{0}\right)^{-1} + I_{\text{pole}}(s)} \\ \mathcal{M}_{k}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{g^{2}}{m^{2}-s} + \gamma_{0}\right)^{-1} - i\rho(s)} \\ \mathcal{M}_{l}^{\ell=1}(s) &= \frac{16\pi}{\frac{1}{4k^{\star 2}} \left(\frac{g^{2}}{m^{2}-s} + \gamma_{0}\right)^{-1} + I_{\text{pole}}(s)} \end{split}$$

WILLIAM & MARY

 $\pi K \rightarrow \pi K \ \ell = 1$ elastic scattering

PRL 123 042002 (2019)

Jefferson Lab ccelerator Facility

WILLIAM & MARY

only previous example: $\gamma \pi \rightarrow \pi \pi$

WILLIAM & MARY

 $\gamma K \rightarrow \pi K$ and the K^* resonance from lattice QCD

ccelerator Facility

consider a two-point correlation function – operators with the quantum numbers of a two-hadron system

$$C_L(t, \mathbf{P}) = \int_L d^3 \mathbf{x} \int_L d^3 \mathbf{y} \ e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | A(\mathbf{x}, t) \ B^{\dagger}(\mathbf{y}, 0) | 0 \rangle$$

now consider the 'all-orders' skeleton perturbative expansion for this

where the colored lines are fully-dressed propagators,

and where we are below three-hadron thresholds, so diagrams with three lines can't go on-shell

a 3+1 field theory derivation

basic loop :

[Poisson summation formula]

this ensures on-shell dominance in $\mathcal{L}, \mathcal{R}^{\dagger}$

expanding in partial-waves

$$\mathcal{L} \quad \mathcal{R} \quad - \quad \mathcal{L} \quad \mathcal{R} \quad = -\mathcal{L}_{\ell m}(P) F_{\ell m,\ell'm'}(P,L) \mathcal{R}_{\ell'm'}^{\dagger}(P)$$
with
$$F_{\ell m,\ell'm'}(P,L) = -\left[\frac{1}{L^3} \sum_{\mathbf{k}} -\int \frac{d^3 \mathbf{k}}{(2\pi)^3}\right] \frac{4\pi Y_{\ell m}(\hat{\mathbf{k}}^{\star}) Y_{\ell m}^{\star}(\hat{\mathbf{k}}^{\star})}{2\omega_k 2\omega_{P-k} \left(E - \omega_k - \omega_{P-k} + i\epsilon\right)} \left(\frac{k^{\star}}{q^{\star}}\right)^{\ell+\ell'}$$

WILLIAM & MARY

consider a two-point correlation function – operators with the quantum numbers of a two-hadron system

$$C_L(t, \mathbf{P}) = \int_L d^3 \mathbf{x} \int_L d^3 \mathbf{y} \ e^{-i\mathbf{P} \cdot (\mathbf{x} - \mathbf{y})} \langle 0 | A(\mathbf{x}, t) \ B^{\dagger}(\mathbf{y}, 0) | 0 \rangle$$

now consider the 'all-orders' skeleton perturbative expansion for this

in finite volume
$$(A \ L^3 \ B \ + \ A \ L^3 \ M \ L^3 \ B \ + \ A \ L^3 \ M \ L^3 \ M \ L^3 \ M \ L^3 \ B \ + \ ...$$

in infinite volume $(A \ \infty \ B \ + \ A \ \infty \ M \ \infty \ B \ + \ A \ \infty \ M \ \infty \ M \ \infty \ B \ + \ ...$

$$C_L - C_{\infty} = \tilde{A}(-F)\tilde{B} + \tilde{A}(-F)M(-F)\tilde{B} + \tilde{A}(-F)M(-F)M(-F)\tilde{B} + \dots$$

a geometric series can be summed: $\tilde{A}[F^{-1} + M]^{-1}\tilde{B}$

giving
$$C_L(t, \mathbf{P}) = L^3 \int \frac{dE}{2\pi} e^{iEt} \Big[C_{\infty}(E, \mathbf{P}) - \tilde{A} \left[F^{-1}(E, \mathbf{P}, L) + M(E, \mathbf{P}) \right]^{-1} \tilde{B} \Big]$$

discrete spectral decomposition for finite-volume requires poles in E \Rightarrow divergence of $[F^{-1}(E, \mathbf{P}, L) + M(E, \mathbf{P})]^{-1}$ $\Rightarrow \det [F^{-1}(E, \mathbf{P}, L) + M(E, \mathbf{P})] = 0$

WILLIAM & MARY

coupled-channel toy model

WILLIAM & MARY

