Ambiguities in the Partial-Wave Analysis of Meson Photoproduction

Edmundo S. Barriga ${ }^{1}$, Jiawei Guo², Kevin Scheuer³

GluEf~~

An Old Problem in a New Light

- Ambiguities in PWA is a known problem studied for years
- Solutions on how to address ambiguities exist see Juien B.'s takk: Tuesday 12:20 am
- JPAC recently claimed "there are no mathematical ambiguities in partial-wave analysis of two mesons produced with a linearly polarized photon beam"
- This is true...for a limited waveset or for Barrelet zeroes' ambiguities
- Linearly polarized photon amplitudes have more story to share...

Let's be Clear on Ambiguities

- We focus on continuous ambiguities from Under-Constrained Solutions (UCS), e.g. many shapes that can make a square
- Barrelet zeros are discrete ambiguities, e.g. colors on the shapes combine to make purple

Amplitudes for Linearly Polarized Photon

$$
\begin{gathered}
I(\Phi, \Omega) \approx\left(1-P_{\gamma}\right)\left[\left|\sum_{\ell, m}\left[J_{\ell}\right]_{m}^{(-)} \operatorname{Im}\left(Z_{\ell}^{m}\right)\right|^{2}+\left|\sum_{\ell, m}\left[J_{\ell}\right]_{m}^{(+)} \operatorname{Re}\left(Z_{\ell}^{m}\right)\right|^{2}\right] \\
+\left(1+P_{\gamma}\right)\left[\left|\sum_{\ell, m}\left[J_{\ell}\right]_{m}^{(+)} \operatorname{Im}\left(Z_{\ell}^{m}\right)\right|^{2}+\left|\sum_{\ell, m}\left[J_{\ell}\right]_{m}^{(-)} \operatorname{Re}\left(Z_{\ell}^{m}\right)\right|^{2}\right] \\
Z_{l}^{m}(\Omega, \Phi)=Y_{l}^{m}(\Omega) e^{-i \Phi}
\end{gathered}
$$

- Remember: positive (negative) reflectivity = natural (unnatural) parity exchange
- Are there enough equations to obtain unique free parameters?

Describing Moments with Amplitudes

- Moment expand the intensity with orthogonal angular functions
- Angular moments can be expressed in terms of amplitudes
- For 2 pseudoscalars the formula is:

$$
H(L, M)=\sum \rho_{m m^{\prime}}^{\ell \ell^{\prime}}\left[\sqrt{\frac{2 L+1}{4 \pi}} \sqrt{\frac{2 \ell^{\prime}+1}{2 \ell+1}}\left\langle\ell^{\prime} 0, L 0, \mid \ell 0\right\rangle\left\langle\ell^{\prime} m^{\prime}, L M \mid \ell m\right\rangle\right]
$$

- ρ is the spin density matrix containing the conjugate of the amplitudes from which the magnitudes and phases are extracted
- Allows to count equations and number of parameters

From Moment Equations to Matrices

- The moment expansion can be generalized as:

$$
\sum_{k}^{N} a_{i k} f_{k}=H_{i}
$$

- $a_{m k}=$ all constants (Clebsch-Gordan, normalization, symmetry, etc.)
$\circ f_{k}=$ every combination of free complex parameters $\operatorname{Re}\left(J_{m}{ }^{\varepsilon} J_{m}{ }^{\varepsilon *}\right)$
- The equation $A f=H$ can be expressed as:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M 1} & a_{M 2} & \cdots & a_{M N}
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]=\left[\begin{array}{c}
H_{1} \\
H_{2} \\
\vdots \\
H_{M}
\end{array}\right]
$$

Test if Model is Properly Constrained

- The rank of A gives the number of independent equations
- For N amplitudes, there are $2 \mathrm{~N}-2$ free parameters (these are magnitudes and phases)
- Therefore, UCS ambiguities are present when

$$
\operatorname{rank}(\mathrm{A})<2 N-2
$$

- Means infinitely many values, within some boundaries, will yield the same value of moments/describe the same angular distribution
- This test can be used for any combination of amplitudes

Example: P-Wave Matrix 2 Pseudoscalars

- The matrix A is shown below for the waveset $\left[\mathrm{P}^{ \pm}{ }_{-1}, \mathrm{P}^{ \pm}, \mathrm{P}^{ \pm}{ }_{1}\right]$
- Its rank is 10 and the number of parameters is $2(6)-2=10$

$$
H(0,0)=2\left|P_{1}^{+}\right|^{2}+2\left|P_{0}^{+}\right|^{2}+2\left|P_{-1}^{+}\right|^{2}+2\left|P_{1}^{-}\right|^{2}+2\left|P_{0}^{-}\right|^{2}+2\left|P_{-1}^{-}\right|^{2}
$$

Positive Reflectivity						Negative Reflectivity					
$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{-1} \mathrm{P}_{0}\right)$	P-1 ${ }^{2}$	$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{-1} \mathrm{P}_{0}\right)$	P-1 ${ }^{2}$
2	-	-	2	-	2	2	-	-	2	-	2
-	-	-4	2	-	-	-	-	4	-2	-	-
-0.4	-	-	0.8	-	-0.4	-0.4	-	-	0.8	-	-0.4
-	0.7	-	-	-0.7	-	-	0.7	-	-	-0.7	-
-	-	-1	-	-	-	-	-	-1	-	-	-
-	-	0.8	0.8	-	-	-	-	-0.8	-0.8	-	-
-	0.7	-	-	-0.7	-	-	-0.7	-	-	0.7	-
0.5	-	-	-	-	0.5	-0.5	-	-	-	-	-0.5
-	-0.7	-	-	-0.7	-	-	0.7	-	-	0.7	-
-0.5	-	-	-	-	0.5	0.5	-	-	-	-	-0.5

Example: P-Wave Matrix 2 Pseudoscalars

- The reduced row echelon form immediately tell us its rank

Positive Reflectivity						Negative Reflectivity					
$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(P_{-1} P_{0}\right)$	$\mathrm{P}-1{ }^{2}$	$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{-1} \mathrm{P}_{0}\right)$	$\mathrm{P}_{-1}{ }^{2}$
1	-	-	-	-	-	-	-	-	-	-	1
-	1	-	-	-	-	-	-	-	-	-1	-
-	-	1	-	-	-	-	-	-	-	-	-
-	-	-	1	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-1	-
-	-	-	-	-	1	-	-	-	-	-	-1
-	-	-	-	-	-	1	-	-	-	-	1
-	-	-	-	-	-	-	1	-	-	-1	-
-	-	-	-	-	-	-	-	1	-	-	-
-	-	-	-	-	-	-	-	-	1	-	-

Example: P-Wave Matrix 2 Pseudoscalars

- The negative refl. $P_{-1}{ }^{2}$ depends on $P_{ \pm 1}{ }^{2}$
- The negative refl. $\operatorname{Re}\left(P_{0} P_{-1}\right)$ depends on $\operatorname{Re}\left(P_{0} P_{ \pm 1}\right)$
- The $P_{0}{ }^{2}$ and $\operatorname{Re}\left(P_{1} P_{-1}\right)$ are independent on both reflectivities

Hypothesis 1: Ambiguity exists in both reflectivities for $m= \pm 1, \pm 2$, etc

Positive Reflectivity						Negative Reflectivity					
$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{-1} \mathrm{P}_{0}\right)$	P-1 ${ }^{2}$	$\mathrm{P}_{1}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{0}\right)$	$\operatorname{Re}\left(\mathrm{P}_{1} \mathrm{P}_{-1}\right)$	$\mathrm{P}_{0}{ }^{2}$	$\operatorname{Re}\left(\mathrm{P}_{-1} \mathrm{P}_{0}\right)$	P-1 ${ }^{2}$
1	-	-	-	-	-	-	-	-	-	-	1
-	1	-	-	-	-	-	-	-	-	-1	-
-	-	1	-	-	-	-	-	-	-	-	-
-	-	-	1	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-1	-
-	-	-	-	-	1	-	-	-	-	-	-1
-	-	-	-	-	-	1	-	-	-	-	1
-	-	-	-	-	-	-	1	-	-	-1	-
-	-	-	-	-	-	-	-	1	-	-	-
-	-	-	-	-	-	-	-	-	1	-	-

Example: P-Wave Matrix 2 Pseudoscalars

- If nature does not have P_{0} waves, then UCS ambiguities must occur
- $\operatorname{rank}(\mathrm{A})=5<6$ free parameters
- UCS ambiguities may arise from correlation between the $\mathrm{P}_{ \pm 1}$ waves

Positive Reflectivity			Negative Reflectivity		
$P_{1}{ }^{2}$	$\operatorname{Re}\left(P_{1} P_{-1}\right)$	$P_{-1}{ }^{2}$	$P_{1}{ }^{2}$	$\operatorname{Re}\left(P_{1} P_{-1}\right)$	$P_{-1}{ }^{2}$
1	-	-	-	-	1
-	1	-	-	-	-
-	-	1	-	-	-1
-	-	-	1	-	1
-	-	-	-	1	-

Hypothesis 2: $\mathrm{m}=0$ provides an "anchor" to the range of ambiguous solutions

Example: MC P-Wave 2 Pseudoscalars

- MC of the waveset $\left[\mathrm{P}^{ \pm}{ }_{1}, \mathrm{P}^{ \pm}{ }_{-1}\right]$ shows multiple solutions when fitted

Example: MC P-Wave 2 Pseudoscalars

- Phases behave wildly
- The fits will describe the moments well

Wigner D Functions and $m= \pm 1$ Correlation

- Amplitudes, like moments, are expanded using Wigner D functions
- Moments are unambiguous by construction
- Amplitudes describe intensity in conjugate Wigner D pairs

$$
\begin{gathered}
D_{m^{\prime} m}^{j}(\alpha, \beta, \gamma)=(-1)^{m^{\prime}-m} D_{-m^{\prime},-m}^{j}(\alpha, \beta, \gamma)^{*} \\
D_{m^{\prime} m}^{j}(\alpha, \beta, \gamma)^{*} D_{m^{\prime} m}^{j}(\alpha, \beta, \gamma)=D_{-m^{\prime},-m}^{j}(\alpha, \beta, \gamma)^{*} D_{-m^{\prime},-m}^{j}(\alpha, \beta, \gamma)
\end{gathered}
$$

Polarization Adds Distinguishing Power

- The photon linear polarization helps distinguish waves
- The amount of both reflectivities affects the distinguishing power

The "Flat Wave" Problem

- When equal amounts of positive and negative reflectivity are present, the $\mathrm{m}= \pm 1$ waves become indistinguishable

The "Flat Wave" Problem

- Ex: Dominant reflectivity for a single m :

$$
\mathrm{J}_{1}^{+} \sim \sin ^{2} \mathrm{x}<\mathrm{J}_{1}^{-} \sim 2 \cos ^{2} \mathrm{x}
$$

- When combined with the other m, the "flat" part becomes ambiguous i.e. both $m= \pm 1$ flat parts can describe the gray box
- Can unambiguously extract the difference between the reflectivities (β) in an m projection

Example Data: Ambiguities in $\omega \pi^{0}$ and $\omega \eta$

- The current wavesets used in both channels predict no ambiguities:
\checkmark (1S, 1P, 1D waves): 34 free params < rank = 46
\checkmark (1S, 1P, 2P, 3F waves): 70 free params < rank = 153
- $\omega \pi^{0}$ is observed to effectively have no ambiguities, while $\omega \eta$ seems to be influenced by them

PWA of $\omega \pi^{0}$ Showing Stability

Hypothesis: $\omega \pi^{0}$ PWA

- Fit to GlueX-I
- Very dominant S-wave
\checkmark Significant $\mathrm{m}=0$ contribution
\checkmark Dominance of a reflectivity

Data Hypothesis 1: a strong m = 0 contribution restricts USC ambiguities

PWA of $\omega \eta$ Showing Signs of UCS Ambiguities

Hypothesis: $\omega \eta$ PWA

- Fit to GlueX-I
~ Small $\mathrm{m}=0$ contribution
X No dominant reflectivity

Data Hypothesis 2: the closer the contribution from both reflectivities are, the higher the chances the fit suffers from UCS ambiguities

Paths to Help Fits with UCS Ambiguities

- Amplitudes use an orthogonal basis that is "less" orthogonal when describing the quadratic space in which the intensity lives. This creates a dependency between the pair of $m= \pm 1, \pm 2$, etc waves
- Two paths that could help with UCS ambiguities:
- Reorganizing amplitudes in the intensity
- Adding constraints

Solution: Reorganizing Amplitudes in the Intensity

What is it about:

Grouping a set of amplitudes together could help the fit find the global minima more reliably

Pros:

A general approach independent of the model

It might be possible to calculate phase differences and help recognize resonances in data

Cons:

Sweeps the ambiguities under the rug, lose distinguishing power between m projections

Unpolarized-"Flat"

$$
\begin{array}{r}
I\left(\left\{c^{\epsilon}, X\right\}_{m}^{i}\right) \approx \sum_{i, j, m_{i}, m_{j}} \underline{c}_{\left(\left[c^{i}\right]_{m_{i}}^{+}\left[c^{j}\right]_{m_{j}}^{+*}+\left[c^{i}\right]_{m_{i}}^{-}\left[c^{j}\right]_{m_{j}}^{-*}\right)\left(X_{m_{i}}^{i} X_{m_{j}}^{j *}+X_{m_{i}}^{i *} X_{m_{j}}^{j}\right)}^{-P_{\gamma}\left[\left(\left[c^{i}\right]_{m_{i}}^{+}\left[c^{j}\right]_{m_{j}}^{+*}-\left[c^{i}\right]_{m_{i}}^{-}\left[c^{j}\right]_{m_{j}}^{-*}\right) \times\left(\cos 2 \Phi\left(X_{m_{i}}^{i *} X_{m_{j}}^{j *}+X_{m_{i}}^{i} X_{m_{j}}^{j}\right)\right.\right.} \\
\left.+i \sin 2 \Phi\left(X_{m_{i}}^{i *} X_{m_{j}}^{j *}-X_{m_{i}}^{i} X_{m_{j}}^{j}\right)\right) \text { polarized- } \beta
\end{array}
$$

Solution: Constraints

What is it about:

We could look for physical insight that would help us constrain the equations, e.g. the addition of Breit-Wigner amplitude across bins

Pros:

We add extra information to the system

Cons:

The constraints could be a case by case situation and not general

See Malte's talk: Tuesday 10:05 am
See Lawrence's talk: Next talk

Conclusions

- There is a challenge when describing the intensity in terms of amplitudes because of the way Wigner D functions describe the quadratic space
- Data sets might be sensitive to these type of issues even when the model used to fit it has, in principle, no ambiguities
- We are testing ways to circumvent the dependencies created by the math, to find a solution that is practical and can be generalized

GlueX acknowledges the support of several funding agencies and computing facilities: gluex.org/thanks

Backup

Spin Density Matrix

$$
\begin{aligned}
& { }^{0} \rho_{m, m^{\prime}}^{\ell, \ell^{\prime}}(\omega, t)=\frac{1}{2} \sum_{\substack{\lambda, \lambda^{\prime}= \pm 1 \\
\lambda_{1}, \lambda_{2}= \pm 1 / 2}} \mathcal{T}_{m \lambda ; \lambda_{1} \lambda_{2}}^{\ell}(\omega, t) \mathcal{T}_{m^{\prime} \lambda^{\prime} ; \lambda_{1} \lambda_{2}}^{\ell^{\prime} *}(\omega, t) \\
& { }^{1} \rho_{m, m^{\prime}}^{\ell, \ell^{\prime}}(\omega, t)=\frac{1}{2} \sum_{\substack{\lambda, \lambda^{\prime}= \pm 1 \\
\lambda_{1}, \lambda_{2}= \pm 1 / 2}} \mathcal{T}_{m-\lambda ; \lambda_{1} \lambda_{2}}^{\ell}(\omega, t) \mathcal{T}_{m^{\prime} \lambda^{\prime} ; \lambda_{1} \lambda_{2}}^{\ell^{\prime} *}(\omega, t) \\
& { }^{2} \rho_{m, m^{\prime}}^{\ell, \ell^{\prime}}(\omega, t)=\frac{i}{2} \sum_{\substack{\lambda, \lambda^{\prime}= \pm 1 \\
\lambda_{1}, \lambda_{2}= \pm 1 / 2}} \lambda \mathcal{T}_{m-\lambda ; \lambda_{1} \lambda_{2}}^{\ell}(\omega, t) \mathcal{T}_{m^{\prime} \lambda^{\prime} ; \lambda_{1} \lambda_{2}}^{\ell^{\prime} *}(\omega, t) .
\end{aligned}
$$

