Amplitude analysis of heavy meson systems at BESII

XYZ states – recent progress and future perspectives

Nils Hüsken Johannes Gutenberg-Universität Mainz

PWA13/ATHOS8 May 31st, 2024 JOHANNES GUTENBERG UNIVERSITÄT MAINZ

e⁺e⁻ collisions at center-of-mass energies in the *τ*-charm region: 2 - 5 GeV
in operation since 2008, upgrade coming this summer!

BESIII experiment at the BEPCII accelerator

XYZ physics

• $c\bar{c}$ spectrum from potential models:

$$V_{q\bar{q}} = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} + k \cdot r$$

٠

+ spin-dependent terms

IGU

- see e.g.: Godfrey & Isgur, PRD 32 (1985) 189-231 Barnes, Godfrey, Swanson, PRD 72 (2005) 054026 Godfrey & Moates, PRD 92 (2015) 054034
- good agreement with experiments
- many additional states seen in experiments like BaBar, Belle, BESIII, LHCb, ...

mass (GeV)

XYZ physics

Въ.

 $c\bar{c}$ spectrum from potential models: ٠

$$V_{q\bar{q}} = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} + k \cdot r$$

٠

٠

+ spin-dependent terms

IGU

- see e.g.: Godfrey & Isgur, PRD 32 (1985) 189-231 Barnes, Godfrey, Swanson, PRD 72 (2005) 054026 Godfrey & Moates, PRD 92 (2015) 054034
- good agreement with experiments
- many additional states seen in experiments like BaBar, Belle, BESIII, LHCb, ...

and a second second second second second second

- predicted states between 3.7 and 4.6 GeV: $\psi(1D), \psi(3S), \psi(2D)$ and $\psi(4S)$
- commonly identified as $\psi(3770), \psi(4040), \psi(4160)$ and $\psi(4415)$
- at least three additional peaks observed: $\psi(4230), \psi(4360)$ and $\psi(4660)$

4400

 $\psi(4360)$

4500

- BESIII: ηJ/ψ

- BESIII: ωχ_{ρο}

 $-\frac{T}{T}$ BESIII: $\pi^+\pi^-\psi(2S)$

BESIII: $\pi^+\pi^- J/\psi$

BESIII: $\pi^+ D^0 D^{*-} + c.c.$

IGU

Conventional vector charmonia (?)

• information almost exclusively from $e^+e^- \rightarrow$ hadrons

- but: this is a sum of highly non-trivial exclusive processes
- should we really interpret the inclusive cross section like this?

[G

(a) using Breit-Wigner amplitudes fitted to single channels

(should only do this for narrow, isolated resonances)

that would be important to know...

IGIL

(b) using coupled channel models

Eichten et al., Phys. Rev. D 21 (1980) 203

In our calculation there is some weak structure in the 3.9-4.0 GeV region. It does not arise from a $c\bar{c}$ resonance, but from the opening of the $D\bar{D}^* + D^*\bar{D}$ channel and a decrease in the $D\bar{D}$ channel due to a nearby zero in the 3S decay amplitude.

IGIU

• if peak near 3.9 GeV is indeed (primarily) from $D^*\overline{D} \leftrightarrow D\overline{D}$ rescattering, a simple *K*-matrix model should confirm that!

$$K_{\mu\nu} = \sum_{R} \frac{g_{\mu,R}(s) \cdot g_{\nu,R}(s)}{m_R - s} + b_{\mu\nu}(s) \qquad \mu \qquad \nu = \mu \qquad \nu + \mu \qquad \nu$$

Aitchison's P-vector approach:

$$M_{\mu,e^+e^-} = \sum_{\nu} \left(1 + \hat{K}\hat{C}\right)_{\mu\nu}^{-1} P_{\nu} \qquad \mu \qquad \nu = \mu \qquad \nu - \mu \qquad C \qquad \nu$$

IG

NH, R. Lebed, R. Mitchell, E. Swanson, Y.Q. Wang, C.Z. Yuan, arXiv:2404.03896

- good fit to $e^+e^- \rightarrow D^{(*)}\overline{D}^{(*)}$ data up to 4.2 GeV using two bare poles $\psi(3770), \psi(4040)$
- indeed describe peak near 3.9 GeV without the need for additional pole
- however, no predictive power > 4.2 GeV

NH, R. Lebed, R. Mitchell, E. Swanson, Y.Q. Wang, C.Z. Yuan, arXiv:2404.03896

 14
 Data from: BESIII (unoff.) Andy Julin, University of Minnesota BESIII: arXiv:2402.03829
 BESIII: JHEP 05 (2022) 155 Belle: Phys.Rev.D 97 (2018) 1, 012002 CLEO: Phys.Rev.D 80 (2009) 072001
 BES: PRL 88, 101802 (2002) BESII: PRL 97, 262001 (2006) SPEAR: PRL 39, 526 (1977); A. Osterheld et al. 86; Schindler 79

electronic couplings, hadronic couplings

→ ongoing, direct collaboration:
 BESIII, E. Swanson, S. Dawid

IGL

Global coupled-channel analysis of $e^+e^- \rightarrow c\bar{c}$ processes in $\sqrt{s} = 3.75 - 4.7$ GeV

S.X. Nakamura,^{1, 2, 3},* X.-H. Li,^{2, 3} H.-P. Peng,^{2, 3} Z.-T. Sun,¹ and X.-R. Zhou^{2, 3}

This work PDG [4] M (MeV) $\Gamma (MeV)$ M (MeV) Γ (MeV) 3775 ± 2.0 28 ± 1.0 3778.1 ± 0.7 27.5 ± 0.9 $\psi(3770)$ 4026 ± 0.1 25 ± 0.3 4039 ± 1 80 ± 10 $\psi(4040)$ 4232 ± 1.0 114 ± 1.7 4191 ± 5 70 ± 10 $\psi(4160)$ 36 ± 0.8 4222.5 ± 2.4 48 ± 8 $\psi(4230)$ 4226 ± 0.4 328 ± 0.9 4309 ± 0.6 183 ± 0.2 4374 ± 7 118 ± 12 $\psi(4360)$ 4369 ± 0.1 4421 ± 4 $\psi(4415)$ 4394 ± 0.7 93 ± 0.9 62 ± 20 72^{+14}_{-12} $\psi(4660)$ 4690 ± 7.3 106 ± 8.8 4630 ± 6

arXiv:2312.17658

IGlU

they find 7 poles (5 bare poles), but no $\psi(4160)$

12

peak at 3.9 GeV is nonresonant!

a first attempt was made!

$\chi_{c1}(3872)$

IGU

19

 $\chi_{c1}(38/2)$

Lineshape studies: based on Hanhart, Kalashnikova, Nefediev, PRD 81, 094028 (2010)

IGU

 $\chi_{c1}(3872)$

IGL

PRL 132 (2024) 15, 151903

PRL 132 (2024) 15, 151903

	BEolii	21105	$\rightarrow D^{\circ}D^{*\circ}$ channel more sensitive
g	$0.16 \pm 0.10^{+1.12}_{-0.11}$	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	to lineshape
pole (sheet I)	$(7.04 \pm 0.15^{+0.07}_{-0.08})$ - $i(0.19 \pm 0.08^{+0.14}_{-0.19})$	7.10 <i>- i</i> 0.13	→ results consistent with LHCb → room to improve with more data!
$\pi^+\pi^- J/\psi)/\Gamma(D^0\overline{D}^{*0})$	$0.05\pm0.01^{+0.01}_{-0.02}$	0.11 ± 0.03	
Ζ	0.18	0.15	JG

IG

Γ(

$Z_{c}(3900)$

- PWA in helicity formalism
- 2 models:

(I) $f_0(980)$ as Flatté, $\sigma(500)$, $f_0(1370)$, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner PLB 607, 243 (2005)

(II) $\sigma(500)$, $f_0(980)$, $f_0(1370)$ with K-matrix, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner EPJA 16, 229 (2003)

 $Z_{c}(3900)$

- mass and width of $Z_c(3900)$ determined from simultaneous fit to groups of center-of-mass energies
- fit fractions then determined from fits to single energies, with all masses and widths fixed

\sqrt{s} (GeV)	$M (\text{MeV}/c^2)$	Γ (MeV)
4.1567 - 4.1989	3883.5 ± 3.6	38.6 ± 3.6
4.2091 - 4.2357	$3884(6 \pm 1.0$	37.8 ± 1.6
4.2438 - 4.2776	3884.9 ± 1.8	34.2 ± 3.3
4.2866 - 4.3583	3890.0 ± 2.3	36.1 ± 4.2
Average	$3884.6 \pm 0.7 \pm 3.3$	$37.2 \pm 1.3 \pm 6.6$

IGU

26

 $Z_{c}(3900)$

• cross sections of sub-processes \rightarrow clear indication of resonant production of $Z_c \pi$, $(\pi \pi)_{S-\text{wave}} J/\psi$

IGU

• model-dependence of $(\pi\pi)_{S-wave}$ seems well under control

 $Z_{c}(3900)$

but not all is understood: what happens at larger center-of-mass energies?

Summary

Summary

- BESIII remains very active in spectroscopy of charmonium-like states
- vector states:
 - o clear structures in hidden-charm final states
 - measurements of two- and three-body open-charm cross sections nearly complete
 - o interpretation of single channels as well as inclusive cross section is difficult...
 - ... coupled channel approaches are needed and are coming!
- $\chi_{c1}(3872)$:
 - BESIII has established production process: $\psi(4230) \rightarrow \gamma \chi_{c1}(3872)$
 - allows to look for new decay modes...
 - ... and lineshape studies can be improved with future data!
- Z_c -states:
 - \circ $\,$ new data, much more finely spaced in center-of-mass energy
 - study connection between $\psi(4230)$ and $Z_c(3900)$
 - o intriguing open question: what happens at larger center-of-mass energies?
- very much open to experiment-theory collaboration approach us!

Outlook

Upgrade to BEPCII:

- up to 3x higher luminosities in XYZ region
 - precision XYZ physics at BESIII
 - fine energy scans to study cross sections
 - large datasets at single \sqrt{s} to study X, Z_c lineshapes
 - open to suggestions!
- center-of-mass energies up to 5.6 GeV
 - cross multiple charmed baryon thresholds: $\Sigma_c \overline{\Sigma}_c, \Xi_c \overline{\Xi}_c, \Omega_c \overline{\Omega}_c$
 - above $J/\psi p\bar{p}$ threshold, can we produce pentaquarks?
 - largely unexplored region, new surprises await!

IGIU

Thank you for your attention!

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

