Search for Exotic Hadrons in $\eta^{(\prime)}\pi$ at GlueX

Malte Albrecht for the GlueX Collaboration

Jefferson Lab

Office of Science

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA13/ATHOS8) College of William & Mary, Williamsburg, VA

28/05/2024

The $\eta^{(\prime)}\pi$ System

 $J^{PC} = 1^{-+}$

 $\rho\pi, \ \eta'\pi, \ f_1(1285)\pi, \ b_1(1235)\pi$

• Ongoing quest:

- What are the correct degrees of freedom to describe the hadron spectrum? $\pi_1(1600)$
- How do gluons contribute to the structure of hadrons?
- Mapping out the spectrum of light hybrids:
 - Evidence in multiple channels, consistent results
 - Search for partner states, regular J^{PC} hybrids, higher mass nonets
 - Partial Wave Analysis (PWA) is an indispensable tool
 - Achieving analysis goals depends on strong theory-experiment collaboration
- Strongest experimental evidence so far in $\eta^{(\prime)}\pi$ channels
 - \rightarrow High priority for GlueX
 - \rightarrow Investigating in parallel:

PWA13/ATHOS8

Hybrid Mesons

Two Hybrid Mesons?

- Analysis of COMPASS data from JPAC, recently extended with $\overline{p}p$ data: [A.Rodas et.al. PRL 122, 042002 (2019), B.Kopf et.al. Eur.Phys.J.C 81, 1056 (2021)]
- Sophisticated description of 1^{-+} wave with 1-pole, coupled channels
- Observed structures described by a single resonance

The Route to Exotics with GlueX

- Photoproduction a versatile process:
 - Incoming photon may oscillate to vector meson
 - Production of mesonic resonances as well as target excitations
 - Complementary to πN reaction used by COMPASS, E852, VES
 - Allows coupling to all lightest hybrid nonet states

- Understand (polarized) production of "simple" hadrons increase complexity stepwise
- Achieve good understanding of acceptance and backgrounds
 - Single pseudoscalar production asymmetries [GlueX, PRC 95 (2017) 042201; PRC, 100 (2019) 052201; PRC 103 (2021) 022201]
 - Spin density matrix elements ($\omega, \varphi, \Lambda(1520)$ PRC 105, 035201 (2022), ho PRC 108, 055204 (2023))
- Investigation of $\eta^{(\prime)}\pi$ channels
 - Study production mechanism, cross section of known mesons first
 - Charged and neutral modes, different sub-decays \rightarrow acceptance, background handling
- Extend hybrid search to vector-pseudoscalar channels (ωπ, ωη, φπ, φη, K*K) (see talk by Amy Schertz: Fri, 4:45pm!)

The GlueX Expetities that Jefferson Lab $_{\sigma_E/E \approx 6\%/\sqrt{E} + 2\%}^{\sigma_p/p \approx 120 - \phi}$

Phase II ongoing (expect 3-4 times Phase I data)

Malte Albrecht (JLab)

PWA93/ATHOS8

$\gamma p ightarrow \pi \eta N$ at GlueX

- Evidence for spin-exotic contribution from other experiments
 → Key channel for GlueX
- Clear signals at $a_0(980)$ and $a_2(1320)$ masses (not acceptance corrected)

 $0.1 < -t < 0.3 \ {
m GeV}^2$

Rest Frame of Xwhere $X \to \eta \pi$ Η GJ y_{GJ} ~еј 7 Rest Frame of Xwhere $X \to \eta \pi$ θ_{GJ} Angular distribution $a_2(1320)$ signal clearly different between charged and neutral channels

Different spin-projection states populated in charged vs. Neutral channel

$\gamma p ightarrow \pi \eta N$ at GlueX

- Evidence for spin-exotic contribution from other experiments
 → Key channel for GlueX
- Clear signals at $a_0(980)$ and $a_2(1320)$ masses (not acceptance corrected)

Definition of Amplitudes

- Described by three angles: $\cos \theta_{\eta}$ and ϕ_{η} in the resonance rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

 High-energy t-channel picture: 'reflectivity' fixes the product of naturalities of the exchange particle and the produced resonance

Naturality: $\eta = P(-1)^J$ natural parity $\eta = +1$ for: $J^P = 0^+, 1^-, 2^+, \dots$ unnatural parity $\eta = -1$ for: $J^P = 0^-, 1^+, 2^-, \dots$

• In case of $\eta \pi$: positive (negative) reflectivity = natural (unnatural) parity exchange

Definition of Amplitudes

- Described by three angles: $\cos \theta_{\eta}$ and ϕ_{η} in the resonance rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

• Basis: Z_l^m amplitudes defined as $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

- Complexity: Reflectivity $\epsilon = \pm 1$ and spin projections m = -l, ..., +l allowed
 - 4 times more amplitudes than with pion beam (with same truncation)

Mass-Indep. PWA of $\gamma p \rightarrow \eta \pi^0 p$

Work of L. Ng, M.A.

- Combined fit of all polarization orientations
- Large S-wave, positive reflectivity contribution
 - Non-resonant?
 - Contribution from other resonance(s)?
- Clear signal in m = +2 D-wave
- Waveset initially based on Tensor Meson Dominance model:

 $L_m^{\epsilon} = S_0^{\pm}, D_0^{\pm}, D_1^{\pm}, D_2^{+}, D_{-1}^{-}$

[V.Mathieu et.al. (JPAC) PRD 102, 014003 (2020)]

• Persisting challenges:

leakage between waves, fluctuations - especially for subdominant waves, ambiguities (*More on ambiguities, non-parametric approaches: Edmundo's talk, Wed 4:15pm and Lawrence' talk Wed, 4.45pm!*)

 \rightarrow Perform semi - mass independent PWA to extract a_2 contribution

Validity of TMD Waveset

Work of L. Ng, M.A.

Waveset: $L_m^{\epsilon} = S_0^{\pm}, D_0^{\pm}, D_1^{\pm}, D_2^{\pm}, D_{-1}^{-1}$

Extension of Waveset

Work of L. Ng, M.A.

Waveset: $L_m^{\epsilon} = S_0^{\pm}, D_0^{\pm}, D_1^{\pm}, D_2^+, D_{-1}^-, D_{-2}^+$ For final results: Extended to full waveset

Malte Albrecht (JLab)

PWA13/ATHOS8

Semi-Mass Independent PWA ($\gamma p \rightarrow \pi^0 \eta p$)

 $Work_{Qf}L.Ng_{\pi}MA$

- Simplify problem by introducing physics constraint:
- $a_2(1320)$ reasonably isolated \rightarrow Well described by Breit-Wigner function
- S-wave has complex structure \rightarrow keep "mass-independent" parameterisation
- Eliminates leakage between waves, ensures continuity of solution $a_2(1320)$ $a_2(1320)$
- Major contributions consistent with observations from mass independent PWA

Differential $a_2(1320)^0$ Cross Section

- Reasonable agreement with JPAC prediction
- We observe dominance of natural parity exchange (ρ, ω, \dots)
- Statistical uncertainties from bootstrapping, systematics finalized
- Publication in preparation (internal review)

Work of L. Ng, M.A.

Double Regge Process

- Double-Reggeon exchange process (similar to Deck-contribution at COMPASS)
 - Dominant at high invariant mass
 - Extends down into resonance region, will overlap with (broad) π_1 signal, if present
 - Can enhance odd partial waves
 → mimic exotic signal
 - Important to understand and model this process
 → Theory support indispensable

Work of R. Barsotti

Improved Double Regge Process Modeling

• Close collaboration with Theory/JPAC:

Work of R. Barsotti

- Original model was too simplistic (see also [L. Bibrzycky et. al. (JPAC), EPJ C 81, 647 (2029) $\to \pi\eta N$ at GlueX
- Improved model available that involves better description of vertex factors, five parameters to describe kinematic distribution
- Monte Carlo study with updated model underway
- First fits to data promising, reasonable agreement in high mass region \rightarrow Can we extrapolate a model for Bouble Regge to the resonance region?

Mass Indep. PWA of γp

- Combined fit of all polarization orientations
- Dominant S-wave contribution in negative reflectivity component
- Clear $a_2(1320)$ signal in m = +1D-wave, negative reflectivity
 - Expected for unnatural parity exchange (pion exchange! Contrary to neutral channel)
 - Same challenges with mass-independent fit as in neutral channel
 - $\rightarrow {\rm Extract} \ a_2 \ {\rm cross} \ {\rm section} \ {\rm with} \\ {\rm same} \ {\rm semi} \ {\rm mass-independent} \\ {\rm PWA} \ {\rm stategy}$

Mass Indep. PWA of γp

- Combined fit of all polarization orientations
- Dominant S-wave contribution in negative reflectivity component
- Clear $a_2(1320)$ signal in m = +1D-wave, negative reflectivity
 - Expected for unnatural parity exchange (pion exchange! Contrary to neutral channel)
 - Same challenges with mass-independent fit as in neutral channel
 - → Extract *a*₂ cross section with same semi mass-independent PWA stategy

17

First Results for Differential a_2^- Cross Section

estimation from simple one-dimensional fit to mass spectrum

Non- Δ^{++} Background at higher Itl

- At higher t, non- Δ^{++} background important
- Contains peaking background under a_2 signal possibly from $\gamma p \rightarrow (a_2^- \pi^+) \ p \rightarrow \pi^+ \pi^- \eta \ p$
- Strategy developed:
 - Include Δ^{++} in amplitudes \rightarrow working with JPAC
 - Separate components in fit
- Development important for other channels such as $\eta' \pi^- \Delta^{++}, \omega \pi^- \Delta^{++}$

Malte Albrecht (JLab)

 $0.3 < t < 0.6 \,\mathrm{GeV}^2$

1.6

Events / 10 MeV/c² 000 0001

600

400

200

1.0

1.2

1.4

Δ^{++} SDMEs

- Many channels rely on understanding and describing Δ^{++} at the lower vertex correctly
- Structured effort underway:
 - Extract Δ^{++} SDMEs in $\gamma p \rightarrow \pi^{-} \Delta^{++}$ first: (see talk by Vanamali, Sat. 11am!)

- Include Δ^{++} decay angles in amplitude model, extract $a_2^-(1320)$ cross section in $\gamma p \to \eta \pi^- \Delta^{++}$
- Use findings for analysis of $\gamma p \to \eta' \pi^- \Delta^{++}$, which seems to be most promising avenue for exotics search

Light Quark Mesons from Lattice QCD

[Dudek, Edwards, Guo, Thomas, PRD 88 094505(2013)]

• Lightest spin-exotic state: $J^{PC} = 1^{-+}$

Projection for
$$\pi_1 o \eta^{(\prime)} \pi$$

Work of W. Imoehl

- Measurement of strong a_2 signal in $\eta\pi$ channels serves as reference
- Fit π_1 yield assuming signal saturates measured $I = 1 \quad \omega \pi \pi$ cross sections

Analysis of $\eta' \pi$ Channels

Work of W. Imoehl, L. Ng, B. Grube, M.A.

- Based on upper limit for π_1 cross section from $\omega\pi\pi$:
- No large π_1 signal expected in $\eta\pi$
- Possibly dominant signal in $\eta'\pi$
- Publication on upper limit imminent

Closeup of $\eta' \pi^-$ Spectra

Closeup of $\eta' \pi^-$ Spectra

Malte Albrecht (JLab)

PWA13/ATHOS8

Closeup of $\eta' \pi^-$ Spectra

Malte Albrecht (JLab)

PWA13/ATHOS8

Moment decomposition

- Goal: Probe for presence of spin-exotic wave in $\eta'\pi$ Work of B.Grube
- Challenge: Are we sensitive to an exotic contribution with this method?
- Multi-staged approach:
 - Code base for moment extraction developed
 - ° MC Input-Output studies using $\rho(770)$, a₂(1320) → η π⁰ MC
 - Influence of real detector acceptance / efficiency based on η π⁰ MC Extract moments of a₂(1320), π₁(1600) (MC study)

Summary and Outlook

- High quality photoproduction data sets (GlueX Phase I) available, analyses underway
 - Extract a_2 cross sections in high-statistics $\eta \pi' \partial \mathbf{n} \partial \mathbf{h} \partial \mathbf{r} \partial \mathbf{h} \partial \mathbf{r} \partial \mathbf{s}$ so the polarization information to investigate production mechanism (publication in preparation) $\pi_1(1600)$
 - Route towards $\eta' \pi$ channels set, analyses underway \rightarrow Use a_2 signal and cross section measurements as reference
 - Partial wave analysis tools being used and further developed
 → Future: Higher statistics (GlueX Phase II, coupling of dhannels, 1235))
 will allow to refine analysis strategy and possibly decrease model dependencies
- Highly productive collaboration with theory

Malte Albrecht En route to first results on exotic mesons with GlueX!

 $\pi_1(1600)$

DPG Frühjahrstagun

GLUE

Backup

Semi-Model Independent⁹ Fit ($\gamma p - \frac{a_2}{4} (\frac{1}{2} \frac{3}{2} \frac{3}$

Semi-Model Independent wit ($\gamma p = \frac{a_{3}}{\pi^{3}}$)

Malte Albrecht (JLab)

PWA13/ATHOS8