Model-independent phase correction to amplitude models

J Cottee-Meldrum, E Gersabeck, J Lane, C Normand, <u>J Rademacker</u>, S Zheng

JHEP 09 (2023) 007 plus new developments

LHCb: <u>JHEP 04 (2021) 081</u>

3 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Dalitz analysis, 24-26 Sep. 2002, unpublished."

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and

Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP spec

<u>i</u>Phy

alysi

LHCb: <u>JHEP 04 (2021) 081</u>

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLV) and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 twoo d, Dunie (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D7

(ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D7 004)

LHCb: <u>JHEP 02 (2021) 169</u>

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

LHCb: <u>JHEP 02 (2021) 169</u>

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

LHCb: <u>JHEP 02 (2021) 169</u>

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Smi_Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

LHCb: JHEP 02 (2021) 169

Amplitude models describing the D^{0}/\overline{D}^{0} decays have too large uncertainties \rightarrow model independent methods

ng Sani Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and ecial analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP species."

LHCb: JHEP 02 (2021) 169

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Scrip Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

BESIII: PRL 124 (2020) 24, 241802

CLEO-c: Phys. Rev. D80, 032002 (2009), updated in Phys.Rev. D82 (2010) 112006

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

BESIII: PRL 124 (2020) 24, 241802

CLEO-c: Phys. Rev. D80, 032002 (2009), updated in Phys.Rev. D82 (2010) 112006

Model-independent, binned approach

One complex number per bin-pair, $c_i + is_i$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^0 and $\overline{D}{}^0$ decay amplitudes.

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

Measurements of c_i , s_i at BES III

Model-informed, optimised binning

Measurements of c_i , s_i at BES III

Carefully optimised binning

Carefully optimised binning

Carefully optimised binning

New, unbinned modelindependent method

Other unbinned methods exist: Poluektov, Eur. Phys. J. C 78 (2018) 2, 121; Backus et al, arXiv:2211.05133. In contrast to these and the binned method, we do not do any integration, averaging or projection from 2D to 1D, and therefore do not suffer the associated information loss.

BaBar & BELLE $D^0 o K_S \pi^+ \pi^-$ amplitude analysis

Best statistical precision on γ is achieved with an unbinned model-dependent method. So let's have a look at those models.

1.2M signal events (BELLE) 94% signal purity

PRD 98 (2018) 11, 112012

BaBar & BELLE $D^0 \to K_S \pi^+ \pi^-$ amplitude analysis

PRD 98 (2018) 11, 112012

BaBar & BELLE $D^0 o K_S \pi^+ \pi^-$ amplitude analysis

PRD 98 (2018) 1 <u>112012</u>

BaBar & BELLE $D^0 \to K_S \pi^+ \pi^-$ amplitude analysis

PRD 98 (2018) 11, 112012

Model-independent phase correction

- The magnitudes of amplitude models are OK and can be verified on data.
- Violation of unitarity and analyticity in models destroys link between magnitude and phase - the models' phases are uncertain.
- Idea: Keep models' magnitudes, but correct phases in modelindependent way.

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

In all relevant decay rates, at the charm threshold and in B decays, phases enter through interference terms between D^0 and \overline{D}^0 decay amplitudes, e.g. for D^0 from B^-

$$\Gamma^{-}(s_{+}, s_{-}) \propto r_{D}^{2}(s_{+}, s_{-}) + r_{B}^{2} + 2r_{D}(s_{+}, s_{-})r_{B}\cos(\delta_{B} - \gamma - \delta_{D}(s_{+}, s_{-}))$$

Or CP-tagged BESIII charm decays:

$$\Gamma^{CP}(s_+, s_-) \propto r_D^2(s_+, s_-) + 1 \pm 2r_D(s_+, s_-)\cos(\delta_D(s_+, s_-))$$

We correct this term, the phase difference of the D^0 and \overline{D}^0 decay amplitudes to the same phase space point:

$$\delta_D = \delta_D^{\text{model}} + \delta_D^{\text{corr}}$$

Idea: Generic parametrisation of deviation of phase from model-prediction JHEP 09 (2023) 007

$$\delta(s_+, s_-) = \delta^{\text{model}}(s_+, s_-) + \delta^{\text{corr}}(s_+, s_-)$$

 $\delta^{\rm corr}(s_+,s_-)$ = polynomial in s_+,s_- , determined in simultaneous fit to $B^\pm \to DK^\pm$ and $\psi(3770) \to D\overline{D}$ data

Symmetry:

$$\delta(s_+, s_-) = -\delta(s_-, s_+)$$

$$\delta^{\text{corr}}(s_+, s_-) = -\delta^{\text{corr}}(s_-, s_+)$$

Generate Babar & BELLE amplitude model with modified phase difference $\delta(s_+, s_-)$

This is a sum of two gaussian bias functions

Fit starts from un-modified model - will it be able to find $\delta^{\rm corr} \approx \delta_2^{\rm bias}$ to a sufficient approximation?

JHEP 09 (2023) 007

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

Deviation of δ from model in event generation

Order	$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y \cdot 100$
MD	$+1.3 \pm 0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3
1	$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0
2	$+0.5 \pm 0.9$	$+0.1 \pm 1.0$	-1.0 ± 0.8	$+0.4 \pm 1.0$
3	$+0.6 \pm 0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$
4	$+0.3 \pm 0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3 \pm 1.0$
5	$+0.4 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.3 \pm 1.0$
6	$+0.3 \pm 0.8$	$+0.7 \pm 1.0$	-0.8 ± 0.8	$+0.4 \pm 1.0$
7	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$
8	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$
9	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.7 \pm 1.0$

LHCb yields as in <u>JHEP 02 (2021) 169</u>

JHEP 09 (2023) 007

Sbias

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

Order

MD

Deviation of δ from model in

$= r_B \sin$	$\Pi(O_B \perp \gamma)$) event	generation	2.0 -		0
$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y_{-} \cdot 100$	1.0 -		
$+1.3 \pm 0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3	0.5 -		-1rad
$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0	0.5	1.0 1.5 2.0 2.5 3.0 $m_{K_{\Sigma}^{0}\pi^{+}14}^{2}$	- - Trad
\perp 0 5 \perp 0 0	$ $ $\downarrow 0.1 \pm 1.0$	1 1 1 1 2	$\downarrow 0.4 \pm 1.0$			

1	$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0
2	$+0.5 \pm 0.9$	$+0.1 \pm 1.0$	-1.0 ± 0.8	$+0.4 \pm 1.0$
3	$+0.6 \pm 0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$
4	$+0.3 \pm 0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3 \pm 1.0$
5	$+0.4 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.3 \pm 1.0$
6	$+0.3 \pm 0.8$	$+0.7 \pm 1.0$	-0.8 ± 0.8	$+0.4 \pm 1.0$
7	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$
8	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$
9	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	+0.7 + 1.0

LHCb yields as in <u>JHEP 02 (2021) 169</u>

JHEP 09 (2023) 007

 $\delta^{ ext{bias}}$

\mathcal{X}_{\pm}	=	r_B	co	$s(\delta_{I})$	$3 \pm$	$\gamma)$
y_{\pm}	=	r_B	sit	$n(\delta_B)$	3 ±	γ)

Deviation of δ from model in event generation

2.0

				•	1.5 -	
Order	$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x \cdot 100$	$\Delta y \cdot 100$	1.0 -	
MD	$+1.3 \pm 0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3	0.5 -	
1	$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0	0.5 1.0 1.5 2 $m_{K_2^0\pi^+14}^2$	0 2.5 3.0
2	$+0.5 \pm 0.9$	$ +0.1 \pm 1.0 $	-1.0 ± 0.8	$+0.4 \pm 1.0$	3.0	
3	$+0.6 \pm 0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$	2.5 -	itted
4	$+0.3 \pm 0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3 \pm 1.0$		$\delta^{ m corr}$
5	$+0.4 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.3 \pm 1.0$	2.0 -	
6	$+0.3 \pm 0.8$	$+0.7 \pm 1.0$	-0.8 ± 0.8	$+0.4 \pm 1.0$	1.5	
7	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	1.0 -	
8	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	0.5 -	
9	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.7 \pm 1.0$	0.5 1.0 1.5 2	2.0 2.5 3.0

LHCb yields as in <u>JHEP 02 (2021) 169</u>

JHEP 09 (2023) 007

\mathcal{X}_{\pm}	=	$r_B\cos(\delta_B$	$\pm \gamma)$
y_{\pm}	=	$r_B \sin(\delta_B$	$\pm \gamma$)

Deviation of δ from model in event generation

Order	$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y_{-} \cdot 100$	1.0 -
$\overline{\text{MD}}$	$+1.3 \pm 0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3	0.5 -
1	$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0	0.5
2	$+0.5 \pm 0.9$	$+0.1 \pm 1.0$	-1.0 ± 0.8	$+0.4 \pm 1.0$	3.0 -
3	$+0.6 \pm 0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$	
4	$+0.3 \pm 0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3 \pm 1.0$	2.5 -
5	$+0.4 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.3 \pm 1.0$	2.0 -
6	$+0.3 \pm 0.8$	$+0.7 \pm 1.0$	-0.8 ± 0.8	$+0.4 \pm 1.0$	1.5 -
7	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	1.0 -
8	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	0.5 -
9	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.7 \pm 1.0$	0.5

LHCb yields as in <u>JHEP 02 (2021) 169</u>

Precision on γ with $B^+ \to DK^+, D \to K_S \pi \pi$

Using our implementation of the model, no background, no detector effects.

JHEP 09 (2023) 007

		$\sigma_{\!\scriptscriptstyle \gamma}\!(^\circ)$					
Lumi		new QMI	Model- dependent	8 bins, fixed* ci, si			
1xLHCb	1xBESIII	4.2	4.2	5.1			
1xLHCb	10xBESIII	4.2	4.८				
100xLHCb	1xBESIII	0.45	0.42	0.52			
100xLHCb	10xBESIII	0.43	0.42				

*) additional uncertainty on binned γ fit due to finite BESIII data for 1xBESIII: 1.2° PRD 101 (2020) 11200

(average error reported in 100 pseudo experiments)

(BTW, ultimate precision on γ achieved through combining multiple decay modes)

To which order do we have to expand the polynomial?

To test this, are trying to find phase modifications to the model that affects γ but not (too much) the c_i and s_i measured by BESIII (i.e. "maximum damage with minimal signature").

Damage a phase shift around a given point does to γ :

We'll use this to construct nasty discrepancies between "true" and "assumed" model

To which order do we have to expand the polynomial?

We tune our phase modifications such that the χ^2 between c_i and s_i calculated from "assumed" and "phase-modified" model corresponds to 5σ deviation (assuming current BESIII uncertainties)

BESIII: PRL 124 (2020) 24, 241802

Test a bunch of damaging phase corrections

Pulls from 100 toy experiments, 4 phase-modifications, correction polynomial of 0th, 1st, ..., 8th order

Pull results for γ for all models.

Pull results for γ for the different models, correction polynomials of order 6, 7, 8.

While γ is looking good, some other parameters do show some bias for 2 or 3 of the phase-modification scenarios - still needs to be understood.

Next steps: adding more realism

Toy data for $B^\pm \to DK^\pm$ and control-channel $B^\pm \to D\pi^\pm$, including realistic backgrounds

Unitarity triangle

Past

Present

Outlook

Outlook & Summary I

Outlook & Summary I

New unbinned method (JHEP 09 (2023) 007) makes optimal use of the information contained in $\psi(3770) \to D\overline{D}$ and $B^\pm \to DK^\pm$ data for a better precision on γ .

Summary II

This should also be useful for studying the amplitude model itself!

PS:

Our method assumes that the magnitude of BaBar/Belle amplitude model is (sufficiently) accurate. This implies we need to be able to implement that model *exactly*. Implementing others' models is notoriously difficult.

Misha will explain how to make this better in the future.

The End

The future

Pulls from 100 toy experiments, 4 phase-modifications, correction polynomial of 0th, 1st, ..., 8th order

LHCb: Eur.Phys.J. C78 (2018) no.6, 443

Step 1: Two amplitude models $D^0 \to K^+\pi^-\pi^+\pi^-$ and $\overline D^0 \to K^+\pi^-\pi^+\pi^-$

$B^- \to DK^-, D \to K^+\pi^-\pi^+\pi^-$

BESIII: <u>JHEP 05 (2021) 164</u>

Step 2 Model-informed binning, analysis of correlated D, D pairs in bins at BES III

$$Re^{-i\delta_D} = c_i + is_i$$

Coherence factor: Atwood & Soni PRD 68 (2003) 033003

1st (unbinned) measurement at CLEO-c: PRD 80 (2009) 031105

5-D binning: S Harnew, JR JHEP 03 (2015) 169 Binning based on latest model: Evans, Malde,

Libby, Wilkinson: PLB 802 (2020) 135188

 $B^- o DK^-, D o K^+\pi^-\pi^+\pi^-$ LHCb: <u>arXiv:2209.03692</u> (2022)

Step 3: 2nd most precise *γ* individual measurement

$$\gamma = \left(54.8 + \frac{6.0 + 0.6 + 6.7}{-5.8 - 0.6 - 4.3}\right)^{\circ}$$

statistical systematic

input from charm threshold hope for more BES III data at $\psi(3770)$

The LHCb Detector

LHCb	σ_{x_+}	$\cdot 10^2$	σ_{y_+}	10^{2}	$\sigma_{x_{-}}$	$\cdot 10^2$	$\sigma_{y_{-}}$	10^{2}	σ_{γ}	(\circ)
Lumi	MD	bin	MD	bin	MD	bin	MD	bin	MD	bin
$\overline{} \times 1$	0.780	0.886	1.081	1.482	0.878	1.189	0.939	1.328	4.23	5.09
$\times 100$	0.078	0.089	0.108	0.149	0.088	0.118	0.093	0.134	0.42	0.52

Lumi s	scenario:					
LHCb	BES III	$\sigma_{x_+} \cdot 10^2$	$\sigma_{y_+} \cdot 10^2$	$\sigma_{x-} \cdot 10^2$	$\sigma_{y_{-}} \cdot 10^2$	σ_{γ} (°)
$\times 1$	$\times 1$	0.780	1.091	0.877	0.945	4.21
$\times 1$	$\times 10$	0.773	1.062	0.866	0.924	4.18
$\times 100$	$\times 1$	0.079	0.122	0.090	0.104	0.45
$\times 100$	$\times 10$	0.078	0.115	0.089	0.099	0.43

Parameter counting

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

• Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$

 Parameter counting: Number of bins:

Dividing Dalitz plot into N bin pairs gives 4N bins (2N fd

Number of parameters:

3 global (r_R, δ_R, γ)

2 N (c_i , s_i one per each bin pair)

Theoretically, if $2N+3 \le 4N$ (i.e. $N \ge 2$), can fit all parar from B decays.

• In practice, to achieve good precision on γ , input from threshold to constrain c_i, s_i is absolutely critical.

$B^{\pm} \to DK^{\pm}, D \to K_S \pi^+ \pi^-$ at LHCb

LHCb: <u>JHEP 02 (2021) 169</u>

12.5k signal events

 $m(DK^{\pm})$ [MeV/ c^2]

Input to LHCb γ combination

LHCb-CONF-2022-003 JHEP 12 (2021) 141

LHCb

B decay	D decay	Ref.	Dataset	Status since
2 4000	D deedj	1001	2 000000	Ref. [14]
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \to D h^{\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[30]	Run 1	As before
$B^{\pm} \to D h^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	New
$B^{\pm} \to D h^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \to D h^{\pm}$	$D o K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \to D h^{\pm}$	$D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \to D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[33]	Run 1&2(*)	As before
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D \rightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 o DK^{*0}$	$D \rightarrow h^+ h^-$	[35]	Run 1&2(*)	As before
$B^0 o DK^{*0}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[35]	Run 1&2(*)	As before
$B^0 o DK^{*0}$	$D o K_{\mathrm{S}}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 o D^\mp \pi^\pm$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 o D_s^\mp K^\pm$	$D_s^+ \to h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 o h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 o K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 o h^+ h^-$	$y_{CP}-y_{CP}^{K^-\pi^+}$	[42]	Run 1	As before
$D^0 o h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 o h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+\pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
$D^0 \to K^+\pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run $1\&2(*)$	As before
$D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2+y^2)/4$	[49]	Run 1	As before
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- (\mu^- \text{ tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^{\pm} \to DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
$B^0 \to D^\mp \pi^\pm$	β	HFLAV	[13]	As before
$B_s^0 \to D_s^\mp K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+\pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$D \to K^+\pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_D^{K\pi} \cos \delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi}$	BESIII	[28]	New
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}^+, F_{KK\pi^0}^+$	CLEO-c	[54]	As before
$D\to\pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D \to K^+\pi^-\pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	${\it CLEO-c+LHCb+BESIII}$	[55-57]	As before
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	${\it CLEO-c+LHCb+BESIII}$	[49, 55 – 57]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi},\delta_D^{K_{ m S}^0K\pi},\kappa_D^{K_{ m S}^0K\pi}$	CLEO	[58]	As before
$D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[59]	As before

Input to LHCb γ combination

LHCb-CONF-2022-003 JHEP 12 (2021) 141

LHCb

BES III and others

$B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to DK^{*\pm}$ $B^{\pm} \to DK^{*\pm}$ $B^{\pm} \to Dh^{\pm}\pi^{+}\pi^{-}$							<i>~</i> · · · ·	o. o c o		
$B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to DK^{\pm}$ $B^{\pm} \to DK^{*\pm}$ $B^{\pm} \to DK^{*\pm}$	D decay	Ref.	Dataset	Status since Ref. [14]	Decay	Parameters		Source	Ref.	Status since Ref. [14]
$B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to Dh^{\pm}$ $B^{\pm} \to D^{*}h^{\pm}$ $B^{\pm} \to DK^{*\pm}$ $B^{\pm} \to DK^{*\pm}$	$D \to h$						- 1	LHCb	[33]	As before
$B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow D^{*}h^{\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$	$D \to h$	Too	much	foron		de to be	- 1	LHCb	[53]	As before
$B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow D^{*}h^{\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$	D o K	100	muci	1 101 011	e Siic	JE LO DE	- 1	HFLAV	[13]	As before
$B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow D^{*}h^{\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$	$D \to h$		- - -	1/	- ! I	141 1-4		HFLAV CLEO-c	[13]	As before New
$B^{\pm} \to D^* h^{\pm}$ $B^{\pm} \to D K^{*\pm}$ $B^{\pm} \to D K^{*\pm}$	D o K	read	iabie.	Kev b	oint:	It's a lot.	$\delta_D^{K\pi}$		[27] [28]	New
$B^{\pm} \to DK^{*\pm}$ $B^{\pm} \to DK^{*\pm}$	D o K			•			\circ_D	CLEO-c	[54]	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h$	\perp	And th	nere's r	nore	e a	- 1	CLEO-c+BESIII	[26, 54]	Updated
	$D \to h$ $D \to h$,	ti i di ti		, ,	0.9.		CLEO-c+LHCb+BESIII	[55-57]	As before
$B^{\pm} \longrightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \to h$ $D \to h$						- 1	${\it CLEO-c+LHCb+BESIII}$	[49, 55 – 57]	As before
$B^0 \to DK^{*0}$	$D \to h$ $D \to h$						- 1	CLEO	[58]	As before
$B^0 \to DK^{*0}$	$D \to h$	DECI	\mathbb{H}_{∞}	OOLIKON	aanta	ooD	- 1	LHCb	[59]	As before
$B^0 \to DK^{*0}$	D o K	DEOI	шше	asuren	IE HIS	on $D o$				
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow$	77	_ 0			()				
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow D_s^+ \rightarrow$	$K_S \pi^{-1}$	$\pi^-\pi^0$	<u>arXiv:23</u>	<u>05.039</u>	9 <u>75</u> (2023)				
$\frac{B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-}{D \text{ decay}}$	$\frac{D_s^+ \to}{\text{Observ}}$	v+v-	+		(0000)				
D doody	O BBCI V	$K'K \pi$	$\pi'\pi$ 1	<u> PRD 107</u>	(2023	<u>3) 3, 032009</u>				
$D^0 \to h^+ h^-$	ΔA_{CP}									
$D^0 \to K^+ K^-$	$A_{CP}(K$									
$D^0 \to h^+ h^-$	$y_{CP}-i$	1 1 1				1.2 !112				
$D^0 \to h^+ h^-$ $D^0 \to h^+ h^-$	$y_{CP} - y \\ \Delta Y$	LH	CDM	neasure	emen	ts with				
$D^{\circ} \to h^+ h$ $D^0 \to K^+ \pi^- \text{ (Single Tag)}$			+	+						
$D^0 \to K^+\pi^-$ (Double Tag	,		B^{\perp} .	$\rightarrow DK^{\pm}$	· /) -	\rightarrow				
$D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^-$	(x^2+y)				,					
$D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	x, y		$K^{+}K^{-}$	$\pi^+\pi^-,\pi^-$	$ abla^+\pi^-\pi$	$\pi^{-}\pi^{-}$				
$D^0 o K_{\rm S}^0 \pi^+ \pi^-$	x_{CP}, y_{C}			,						
$D^0 \to K_{\rm S}^0 \pi^+ \pi^-$	x_{CP}, y_{C}		arXiv:2	<u> 2301.103</u>	328 (20	023)				
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- (\mu^- \text{ tag})$	x_{CP}, y_{C}				(- · - /				
	01) 30									

LHCb γ combination

$$\gamma = 63.8^{\circ +3.5^{\circ}}_{-3.7^{\circ}}$$

impact on charm mixing

Unbinned model-independent

Ant

Project 2-D Dalitz plot onto 1D.

• Use amplitude model to associate each point in phase space to a phase difference δ^{model} .

• $c_i, s_i \rightarrow C(\delta^{\text{model}}), S(\delta^{\text{model}}),$ functions C, S parameterised in a generic way (Fourier series)

Expect precision between binned and model-dependent approach.

Other unbinned methods exists

- Anton Poluektov: <u>Eur.Phys.J.C 78 (2018) 2, 121</u>. Projects 2-D Dalitz plot onto 1D. Achieves precision between binned and model-dependent approach.
- Jeffrey V. Backus et al, arXiv:2211.05133, integrate over the 2-D Dalitz plot in an unbinned way. Get a precision of ~5° for similar data set sizes we use, however, comparison is difficult due to different assumptions on the values of γ and δ_{R} , and implementation differences in amplitude model.
- In contrast to these methods and the binned method, we do not do any integration, averaging or projection and therefore do not suffer the associated information loss.

Input to LHCb γ combination

LHCb-CONF-2022-003 JHEP 12 (2021) 141

I HCb

L				
B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \to D h^{\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[30]	Run 1	As before
$B^{\pm} \to D h^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	New
$B^{\pm} \to D h^{\pm}$	$D o h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \to D h^{\pm}$	$D o K_{ m S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \to D h^{\pm}$	$D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \to D^* h^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D \rightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 o DK^{*0}$	$D \rightarrow h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 o DK^{*0}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[35]	Run $1\&2(*)$	As before
$B^0 o DK^{*0}$	$D o K_{\mathrm{S}}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 o D^\mp \pi^\pm$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 \to h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 o K^+K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 o h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[42]	Run 1	As before
$D^0 o h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 o h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+\pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
$D^0 \to K^+\pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run $1\&2(*)$	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2+y^2)/4$	[49]	Run 1	As before
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \; (\mu^- \; {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^\pm o DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
$B^0 \to D^\mp \pi^\pm$	β	HFLAV	[13]	As before
$B_s^0 \to D_s^\mp K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+\pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[27]	New
$D \to K^+\pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_D^{K\pi} \cos \delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi}$	BESIII	[28]	New
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}^+, F_{KK\pi^0}^+$	CLEO-c	[54]	As before
$D\to\pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D \to K^+\pi^-\pi^0$	$r_D^{K\pi\pi^0}$, $\delta_D^{K\pi\pi^0}$, $\kappa_D^{K\pi\pi^0}$	${\it CLEO-c+LHCb+BESIII}$	[55-57]	As before
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	${\it CLEO-c+LHCb+BESIII}$	[49, 55 – 57]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{\mathrm{S}}^0K\pi}, \delta_D^{K_{\mathrm{S}}^0K\pi}, \kappa_D^{K_{\mathrm{S}}^0K\pi}$	CLEO	[58]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_0^SK\pi}$	LHCb	[59]	As before

$$\gamma = 63.8^{\circ + 3.5^{\circ}}_{-3.7^{\circ}}$$

Input to LHCb γ combination

LHCb-CONF-2022-003 JHEP 12 (2021) 141

I HCh

BES III and others

		•				
B decay	D decay	Ref.	Dataset	Status since Ref [14]	Decay	Par
$B^{\pm} \rightarrow B^{\pm} \rightarrow B^{\pm} \rightarrow B^{\pm} \rightarrow$	Too much	n for o	one sl	ide to k	эе	$\kappa_{B^{0}}^{Da}$ $\kappa_{B^{0}}^{Da}$ eta
$B^{\pm} \rightarrow B^{\pm} \rightarrow B^{\pm} \rightarrow$	readable.	Key	point:	lt's a l	ot.	τ) ϕ_s $\cos A_K$
$\begin{array}{c} B^{\pm} \rightarrow \\ B^{\pm} \rightarrow \end{array}$	And th	nere's	more	e, e.g.		$F_{\pi\pi}^+$ $F_{4\pi}^+$ r_D^{K7}
$B^{\pm} \rightarrow B^{\pm} \rightarrow B^{0} \rightarrow$						$-rac{r_D^{K_{ m S}^{ m S}}}{r_D^{K_{ m S}^{ m S}}}$
$\begin{array}{c} B^0 \to \\ B^0 \to \end{array}$	BES III me	asure	ement	s on D	\rightarrow	$r_D^{n_s}$
$B^0 \to B^0_s \to B^0_s \to$	$K_S \pi^+ \pi^- \pi^0$	arXiv:2	<u> 2305.03</u>	<u> 3975</u> (20	23)	
$D_s \rightarrow D$ deca	$K^{+}K^{-}\pi^{+}\pi^{-}$	PRD 1	07 (202	23) 3. 03	2009	

LHCb measurements with $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow$ $K^{+}K^{-}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{+}\pi^{-}$ arXiv:2301.10328 (2023)

	Parameters	Source	Ref.	Status since
				Ref. [14]
	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[33]	As before
	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[53]	As before
	β	HFLAV	[13]	As before
)	ϕ_s	HFLAV	[13]	As before
	$\cos \delta_D^{K\pi}$, $\sin \delta_D^{K\pi}$, $(r_D^{K\pi})^2$, x^2 , y	CLEO-c	[27]	New
	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_D^{K\pi} \cos \delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi}$	BESIII	[28]	New
	$F_{\pi\pi\pi^0}^+, F_{KK\pi^0}^+$	CLEO-c	[54]	As before
	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[55–57]	As before
-	$r_D^{K3\pi}$, $\delta_D^{K3\pi}$, $\kappa_D^{K3\pi}$	${\it CLEO-c+LHCb+BESIII}$	[49, 55 – 57]	As before
	$r_D^{K_{\mathrm{S}}^0K\pi},\delta_D^{K_{\mathrm{S}}^0K\pi},\kappa_D^{K_{\mathrm{S}}^0K\pi}$	CLEO	[58]	As before
	$r_D^{K_{\mathrm{S}}^0K\pi}$	LHCb	[59]	As before

$$\gamma = 63.8^{\circ + 3.5^{\circ}}_{-3.7^{\circ}}$$

 $D^0 \rightarrow$

 $D^0 \rightarrow$ $D^0 \rightarrow$

 $D^0 \rightarrow$

 $D^0 \rightarrow$ $D^0 \rightarrow$

 $D^0 \rightarrow$ $D^0 \rightarrow$

LHCb model-independent mixing with $D^0 \to K_S \pi^+ \pi^-$

Same BES III input also critical for charm mixing

first observation of non-zero $x=\frac{\Delta m}{\Gamma}$, i.e. of a mass difference between the two charm mass eigenstates.

$$x = (3.98^{+0.56}_{-0.54}) \times 10^{-3},$$

$$y = (4.6^{+1.5}_{-1.4}) \times 10^{-3},$$

$$|q/p| = 0.996 \pm 0.052,$$

$$\phi = 0.056^{+0.047}_{-0.051}.$$

BESIII: PRL 124 (2020) 24, 241802

 $D^0 \to K_S^0 \pi^+ \pi^-$

LHCb: PRL 127 (2021) 11, 111801

Method: Phys.Rev. D99 (2019) no.1, 012007

$B \pm \rightarrow DK \pm$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Direct Observations

Particles

Trees and loops

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

JHEP 06 (2014) 040, JHEP 07 (2020) 177

Direct Observations

Particles

Trees and loops

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

JHEP 06 (2014) 040, JHEP 07 (2020) 177

Direct Observations

Particles

Trees and loops

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

JHEP 06 (2014) 040, JHEP 07 (2020) 177

geometric representation of Standard Model constraints

Measurment of γ with LHCb & BES III data with model-independent binned method.

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Measurements of c_i , s_i at BES III

Model-informed, optimised binning

Measurements of c_i , s_i at BES III

Model independent, binned y fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

Binned decay rate:

$$\Gamma\left(B^{\pm} \to D(K_s\pi^+\pi^-)K^{\pm}\right)_i = \\ \mathcal{T}_i + r_B^2\mathcal{T}_{-i} + 2\mathsf{r}_\mathsf{B}\sqrt{\mathcal{T}_\mathsf{i}\mathcal{T}_{-i}}\left\{\mathsf{c}_\mathsf{i}\cos\left(\delta\pm\gamma\right) + \mathsf{s}_\mathsf{i}\sin\left(\delta\pm\gamma\right)\right\} \quad \text{specifc D decays}$$

 T_i known from flavour-

(weighted) average of $\cos(\delta_D)$ and $\sin(\delta_D)$ over bin i, where δ_D = phase difference between D→Ks $\pi\pi$ and Dbar→Ksππ

- Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$
- Distribution sensitive to c_i , s_i , r_B , δ and γ .
- c_i, s_i, measured at charm threshold.

Model-independent, binned approach

One complex number per bin-pair, $c_i + \mathbf{i} s_i$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^0 and \overline{D}^0 decay amplitudes.

fit parameters

$$\delta^{\text{corr}} = \sum_{i=0}^{N} \sum_{j=0}^{\frac{N-i}{2}} C_{i,2j+1}$$

ith order Legendre polynomials

 $\delta^{\text{corr}} = \sum_{i,2j+1}^{N-i} \sum_{i,2j+1}^{N-i} P_{i}(z'_{+}) P_{2j+1}(z''_{-})$ (2j+1)th order Legendre polynomials

only odd powers of $z''_- \propto s_- - s_+$, ensures that $\delta^{\rm corr}(s_+, s_-) = -\delta^{\rm corr}(s_-, s_+)$

Generate Babar & BELLE amplitude model with modified phase difference $\delta(s_+, s_-)$

Fit starts from un-modified model - will it be able to find $\delta^{\rm corr} pprox \delta_1^{\rm bias}$ to a sufficient approximation?