Model-independent phase correction to amplitude models

J Cottee-Meldrum, E Gersabeck, J Lane, C Normand, J Rademacker, S Zheng

JHEP 09 (2023) 007 plus new developments

CP violation is an interference effect

CP violation is an interference effect

CP violation is

Nogligib/a ne effect

$$
\beta_{x}
$$

$\geq 1 \times$

CP violation is an interference effect

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003, A. Bondar, "Proceedings of BINP special analysis meeting on Dalitz analysis, 24-26 Sep. 2002, unpublished."

CP violation is an interference effect

CP violation is an interference effect

CP violation is an interference effect

CP violation is an interference effect

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

CLEO-c/BES III's unique data provide additional information on D mesons.

Two measurements for each point in Dalitz space - can extract magnitude and phase!

Model-independent, binned approach

One complex number per bin-pair, $c_{i}+\mathrm{i} s_{i}$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^{0} and \bar{D}^{0} decay amplitudes.

Measurements of c_{i}, s_{i} at BES III

Model-informed, optimised binning

Measurements of c_{i}, s_{i} at BES III

New unbinned method

Carefully optimised binning

New unbinned method

Carefully optimised binning

New unbinned method

JHEP 09 (2023) 007

Carefully optimised binning
New, unbinned modelindependent method

Other unbinned methods exist: Poluektov, Eur.Phys.J.C 78 (2018) 2, 121; Backus et al, arXiv:2211.05133. In contrast to these and the binned method, we do not do any integration, averaging or projection from 2D to 1D, and therefore do not suffer the associated information loss.

BaBar \& BELLE $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$amplitude analysis

$$
\text { PRD } 98 \text { (2018) 11, } 112012
$$

Best statistical precision on γ is achieved with an unbinned modeldependent method. So let's have a look at those models.
1.2M signal events (BELLE) 94\% signal purity

BaBar \& BELLE $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$amplitude analysis

PRD 98 (2018) 11, 112012

BaBar \& BELLE $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$amplitude analysis

PRD 98 (2018) 11, 112012

BaBar \& BELLE $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$amplitude analysis

PRD 98 (2018) 11, 112012

Model-independent phase correction

- The magnitudes of amplitude models are OK and can be verified on data.
- Violation of unitarity and analyticity in models destroys link between magnitude and phase - the models' phases are uncertain.
- Idea: Keep models' magnitudes, but correct phases in modelindependent way.

CP violation is an interference effect

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) $3257-3260$
(ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys. Rev. D70 (2004) 072003

CP violation is an interference effect

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni.Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys. Rev. D70 (2004) 072003

Correct phase differences

In all relevant decay rates, at the charm threshold and in B decays, phases enter through interference terms between D^{0} and \bar{D}^{0} decay amplitudes, e.g. for D^{0} from B^{-}

$$
\Gamma^{-}\left(s_{+}, s_{-}\right) \propto r_{D}^{2}\left(s_{+}, s_{-}\right)+r_{B}^{2}+2 r_{D}\left(s_{+}, s_{-}\right) r_{B} \cos \left(\delta_{B}-\gamma-\delta_{D}\left(s_{+}, s_{-}\right)\right)
$$

Or CP-tagged BESIII charm decays:
$\Gamma^{C P}\left(s_{+}, s_{-}\right) \propto r_{D}^{2}\left(s_{+}, s_{-}\right)+1 \pm 2 r_{D}\left(s_{+}, s_{-}\right) \cos \left(\delta_{D}\left(s_{+}, s_{-}\right)\right)$

We correct this term, the phase difference of the D^{0} and \bar{D}^{0} decay amplitudes to the same phase space point:

$$
\delta_{D}=\delta_{D}^{\text {model }}+\delta_{D}^{\text {corr }}
$$

Idea: Generic parametrisation of deviation of phase from model-prediction

$$
\delta\left(s_{+}, s_{-}\right)=\delta^{\operatorname{model}}\left(s_{+}, s_{-}\right)+\delta^{\mathrm{corr}}\left(s_{+}, s_{-}\right)
$$

$\delta^{\text {corr }}\left(s_{+}, s_{-}\right)=$polynomial in s_{+}, s_{-}, determined in simultaneous fit to $B^{ \pm} \rightarrow D K^{ \pm}$and $\psi(3770) \rightarrow D \bar{D}$ data

Symmetry:

$$
\delta\left(s_{+}, s_{-}\right)=-\delta\left(s_{-}, s_{+}\right)
$$

$$
\delta^{\operatorname{corr}}\left(s_{+}, s_{-}\right)=-\delta^{\operatorname{corr}}\left(s_{-}, s_{+}\right)
$$

Testing the method

Generate Babar \& BELLE amplitude model with modified phase difference $\delta\left(s_{+}, s_{-}\right)$

This is a sum of two gaussian bias functions

Fit starts from un-modified model - will it be able to find $\delta^{\text {corr }} \approx \delta_{2}^{\text {bias }}$ to a sufficient approximation?

Single fit, different-order correction polynomials

 $y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \gamma\right) \quad \begin{array}{r}\text { from model in } \\ \text { event generation }\end{array}$| Order | $\Delta x_{+} \cdot 100$ | $\Delta y_{+} \cdot 100$ | $\Delta x_{-} \cdot 100$ | $\Delta y_{-} \cdot 100$ |
| :---: | :---: | ---: | ---: | :---: |
| MD | $+1.3 \pm 0.8$ | $+1.2 \pm 1.1$ | -1.0 ± 1.3 | -3.3 ± 1.3 |
| 1 | $+1.1 \pm 0.8$ | $+0.5 \pm 1.0$ | -1.3 ± 0.8 | -0.6 ± 1.0 |
| 2 | $+0.5 \pm 0.9$ | $+0.1 \pm 1.0$ | -1.0 ± 0.8 | $+0.4 \pm 1.0$ |
| 3 | $+0.6 \pm 0.8$ | 0.0 ± 1.0 | -1.2 ± 0.8 | $+0.4 \pm 1.0$ |
| 4 | $+0.3 \pm 0.8$ | $+0.4 \pm 1.0$ | -0.8 ± 0.8 | $+0.3 \pm 1.0$ |
| 5 | $+0.4 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.7 ± 0.8 | $+0.3 \pm 1.0$ |
| 6 | $+0.3 \pm 0.8$ | $+0.7 \pm 1.0$ | -0.8 ± 0.8 | $+0.4 \pm 1.0$ |
| 7 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.9 ± 0.8 | $+0.7 \pm 1.0$ |
| 8 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.9 ± 0.8 | $+0.7 \pm 1.0$ |
| 9 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.7 ± 0.8 | $+0.7 \pm 1.0$ |

[^0]
Single fit, different-order correction polynomials

LHCb yields as in JHEP 02 (2021) 169
BESIII yields as in: PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200

Single fit, different-order correction polynomials

$x_{ \pm}=r_{B} \cos \left(\delta_{B} \pm \gamma\right)$	Deviation of $\delta>\sqrt[20]{ }$ "true"
$y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \gamma\right)$	$\underset{\text { from model in } \rightarrow \text { event generation }}{\text { en }}$

Order	$\Delta x_{+} \cdot 100$	$\Delta y_{+} \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y_{-} \cdot 100$	${ }^{20}$
MD	$+1.3 \pm 0.8$	$+1.2 \pm 1.1$	-1.0 ± 1.3	-3.3 ± 1.3	
1	$+1.1 \pm 0.8$	$+0.5 \pm 1.0$	-1.3 ± 0.8	-0.6 ± 1.0	${ }^{15}$
2	$+0.5 \pm 0.9$	$+0.1 \pm 1.0$	-1.0 ± 0.8	$+0.4 \pm 1.0$	
3	$+0.6 \pm 0.8$	0.0 ± 1.0	-1.2 ± 0.8	$+0.4 \pm 1.0$	fitted
4	$+0.3 \pm 0.8$	$+0.4 \pm 1.0$	-0.8 ± 0.8	$+0.3 \pm 1.0$	$\delta^{\text {corr }}$
5	+0.4 ± 0.8	+0.5 ± 1.0	-0.7 ± 0.8	$+0.3 \pm 1.0$	
6	$+0.3 \pm 0.8$	$+0.7 \pm 1.0$	-0.8 ± 0.8	+0.4 ± 1.0	
7	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	
8	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.9 ± 0.8	$+0.7 \pm 1.0$	
9	$+0.3 \pm 0.8$	$+0.5 \pm 1.0$	-0.7 ± 0.8	$+0.7 \pm 1.0$	

LHCb yields as in JHEP 02 (2021) 169
BESIII yields as in: PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200

Single fit, different-order correction polynomials

 $y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \gamma\right) \quad \begin{gathered}\text { from model in } \\ \text { event generation }\end{gathered}$| Order | $\Delta x_{+} \cdot 100$ | $\Delta y_{+} \cdot 100$ | $\Delta x_{-} \cdot 100$ | $\Delta y_{-} \cdot 100$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MD | $+1.3 \pm 0.8$ | $+1.2 \pm 1.1$ | -1.0 ± 1.3 | -3.3 ± 1.3 | |
| 1 | $+1.1 \pm 0.8$ | $+0.5 \pm 1.0$ | -1.3 ± 0.8 | -0.6 ± 1.0 | |
| 2 | $+0.5 \pm 0.9$ | $+0.1 \pm 1.0$ | -1.0 ± 0.8 | $+0.4 \pm 1.0$ | |
| 3 | $+0.6 \pm 0.8$ | 0.0 ± 1.0 | -1.2 ± 0.8 | $+0.4 \pm 1.0$ | fitted |
| 4 | $+0.3 \pm 0.8$ | $+0.4 \pm 1.0$ | -0.8 ± 0.8 | $+0.3 \pm 1.0$ | r |
| 5 | $+0.4 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.7 ± 0.8 | $+0.3 \pm 1.0$ | |
| 6 | $+0.3 \pm 0.8$ | $+0.7 \pm 1.0$ | -0.8 ± 0.8 | $+0.4 \pm 1.0$ | |
| 7 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.9 ± 0.8 | $+0.7 \pm 1.0$ | |
| 8 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.9 ± 0.8 | $+0.7 \pm 1.0$ | |
| 9 | $+0.3 \pm 0.8$ | $+0.5 \pm 1.0$ | -0.7 ± 0.8 | $+0.7 \pm 1.0$ | |

LHCb yields as in JHEP 02 (2021) 169
BESIII yields as in: PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200

Pull studies, 100 fits

Precision on γ with $B^{+} \rightarrow D K^{+}, D \rightarrow K_{S} \pi \pi$

Using our implementation of the model, no background, no detector effects.

Lumi		$\sigma_{\gamma}\left(^{\circ}\right)$		
		new QMI	Modeldependent	8 bins, fixed* ci, si
1xLHCb	$1 \times 8 E S I L$	4.2	4.2	5.1
1xLHCb	10xBESSIII	4.2		
100xLHCb	$1 \times \mathrm{BESILI}$	0.45	0.42	0.52
100xLHCb	10xBESEIII	0.43		

JHEP 09 (2023) 007
*) additional uncertainty on binned γ fit due to finite BESIII data for $1 \times B E S I I I: 1.2^{\circ}$
PRD 101 (2020) 11200
(average error reported in 100 pseudo experiments)
(BTW, ultimate precision on γ achieved through combining multiple decay modes)

To which order do we have to expand the polynomial?

To test this, are trying to find phase modifications to the model that affects γ but not (too much) the c_{i} and s_{i} measured by BESIII (i.e. "maximum damage with minimal signature").

Damage a phase shift around a given point does to γ :

We'll use this to construct nasty discrepancies between "true" and "assumed" model

To which order do we have to expand the polynomial?

BESIII: PRL 124 (2020) 24, 241802

We tune our phase modifications such that the χ^{2} between c_{i} and s_{i} calculated from "assumed" and "phase-modified" model corresponds to 5σ deviation (assuming current BESIII uncertainties)

(PRD 98, 112012)

Test a bunch of damaging phase corrections

Pulls from 100 toy experiments, 4 phase-modifications, correction polynomial of 0th, 1st, ..., 8th order

Plot shows mean of $\left\langle\frac{\gamma^{\text {fit }}-\gamma^{\text {input }}}{\sigma(\gamma)}\right\rangle$, averaged over 100 simulated experiments

Pull results for γ for all models.

Pull results for γ for the different models, correction polynomials of order 6, 7, 8 .

While γ is looking good, some other parameters do show some bias for 2 or 3 of the phase-modification scenarios - still needs to be understood.

Next steps: adding more realism

Toy data for $B^{ \pm} \rightarrow D K^{ \pm}$and control-channel
$B^{ \pm} \rightarrow D \pi^{ \pm}$, including realistic backgrounds

Unitarity triangle

Past

Present

Outlook

What we're aiming for

BESIII + LHCl $+B E L L E$

Outlook \& Summary I

What we're aiming for

BESIII + LHCh $+B E L L E$

Outlook \& Summary I

New unbinned method (JHEP 09 (2023) 007) makes optimal use of the information contained in $\psi(3770) \rightarrow D \bar{D}$ and $B^{ \pm} \rightarrow D K^{ \pm}$data for a better precision on γ.

Summary II

Input phase modification

Fitted phase modification order by order

This should also be useful for studying the amplitude model itself!

PS:

Our method assumes that the magnitude of BaBar/Belle amplitude model is (sufficiently) accurate. This implies we need to be able to implement that model exactly. Implementing others' models is notoriously difficult.

Misha will explain how to make this better in the future.

The End

The future

The future

Pulls from 100 toy experiments, 4 phase-modifications, correction polynomial of 0th, 1st, ..., 8th order

$B^{-} \rightarrow D K^{-}, D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$

$B^{-} \rightarrow D K^{-}, D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$

Step 2 Model-informed binning, analysis of correlated D, \bar{D} pairs in bins at BES III

$$
R e^{-i \delta_{D}}=c_{i}+i s_{i}
$$

Coherence factor: Atwood \& Soni PRD 68 (2003) 033003
1st (unbinned) measurement at
CLEO-c: PRD 80 (2009) 031105
5-D binning: S Harnew, JR JHEP 03 (2015) 169 Binning based on latest model: Evans, Malde, Libby, Wilkinson: PLB 802 (2020) 135188

$$
B^{-} \rightarrow D K^{-}, D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-} \text {LнCb: arXiv:2209.03692 (2022) }
$$

Step 3: 2nd most precise γ individual measurement

The LHCb Detector

Comparing methods

LHCb	$\sigma_{x_{+}} \cdot 10^{2}$		$\sigma_{y_{+}} \cdot 10^{2}$		$\sigma_{x_{-}} \cdot 10^{2}$		$\sigma_{y_{-}} \cdot 10^{2}$		$\sigma_{\gamma}\left({ }^{\circ}\right)$	
Lumi	MD	bin								
$\times 1$	0.780	0.886	1.081	1.482	0.878	1.189	0.939	1.328	4.23	5.09
$\times 100$	0.078	0.089	0.108	0.149	0.088	0.118	0.093	0.134	0.42	0.52

Lumi scenario:

LHCb	BES III	$\sigma_{x_{+}} \cdot 10^{2}$	$\sigma_{y_{+}} \cdot 10^{2}$	$\sigma_{x_{-}} \cdot 10^{2}$	$\sigma_{y_{-}} \cdot 10^{2}$	$\sigma_{\gamma}\left({ }^{\circ}\right)$
$\times 1$	$\times 1$	0.780	1.091	0.877	0.945	4.21
$\times 1$	$\times 10$	0.773	1.062	0.866	0.924	4.18
$\times 100$	$\times 1$	0.079	0.122	0.090	0.104	0.45
$\times 100$	$\times 10$	0.078	0.115	0.089	0.099	0.43

Parameter counting

- Binning such that such that $\mathrm{c}_{\mathrm{i}}=\mathrm{c}_{-\mathrm{i}}, \mathrm{s}_{\mathrm{i}}=-\mathrm{s}_{-\mathrm{i}}$
- Parameter counting: Number of bins:
Dividing Dalitz plot into N bin pairs gives 4 N bins (2 N fc
Number of parameters:
3 global $\left(r_{B}, \delta_{B}, \gamma\right)$
$2 \mathrm{~N}\left(c_{i}, s_{i}\right.$ one per each bin pair)
Theoretically, if $2 \mathrm{~N}+3 \leq 4 \mathrm{~N}$ (i.e. $N \geq 2$), can fit all parar from B decays.

- In practice, to achieve good precision on γ, input from threshold to constrain c_{i}, s_{i} is absolutely critical.

$B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K_{S} \pi^{+} \pi^{-}$at LHCb

LHCb: JHEP 02 (2021) 169

Input to $\mathrm{LHCb} \gamma$ combination

LHCb

B decay	D decay	Ref.	Dataset	Status since Ref. [14]
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	[29]	Run 1\&2	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[30]	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1\&2	New
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-} \pi^{0}$	[19]	Run 1\&2	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$	[31]	Run 1\&2	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	[32]	Run 1\&2	As before
$B^{ \pm} \rightarrow D^{*} h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	[29]	Run 1\&2	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} h^{-}$	[33]	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[33]	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D h^{ \pm} \pi^{+} \pi^{-}$	$D \rightarrow h^{+} h^{-}$	[34]	Run 1	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} h^{-}$	[35]	Run 1\&2(*)	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[35]	Run 1\&2(*)	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow K_{\text {S }}^{0} \pi^{+} \pi^{-}$	[36]	Run 1	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	[37]	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	[38]	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm} \pi^{+} \pi^{-}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	[39]	Run 1\&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since Ref. [14]
$D^{0} \rightarrow h^{+} h^{-}$	$\Delta A_{C P}$	[24, 40, 41]	Run 1\&2	As before
$D^{0} \rightarrow K^{+} K^{-}$	$A_{C P}\left(K^{+} K^{-}\right)$	[16,24, 25]	Run 2	New
$D^{0} \rightarrow h^{+} h^{-}$	$y_{C P}-y_{C P}^{K-\pi^{+}}$	[42]	Run 1	As before
$D^{0} \rightarrow h^{+} h^{-}$	$y_{C P}-y_{C P}^{K^{-} \pi^{+}}$	[15]	Run 2	New
$D^{0} \rightarrow h^{+} h^{-}$	ΔY	[43-46]	Run 1\&2	As before
$D^{0} \rightarrow K^{+} \pi^{-}$(Single Tag)	$R^{ \pm},\left(x^{ \pm}\right)^{2}, y^{\prime \pm}$	[47]	Run 1	As before
$D^{0} \rightarrow K^{+} \pi^{-}$(Double Tag)	$R^{ \pm},\left(x^{ \pm}\right)^{2}, y^{\prime \pm}$	[48]	Run 1\&2(*)	As before
$D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$\left(x^{2}+y^{2}\right) / 4$	[49]	Run 1	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	x, y	[50]	Run 1	As before
$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$(μ^{-}tag)	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

Decay	Parameters	Source	Ref.	Status since Ref. $[14]$
$B^{ \pm} \rightarrow D K^{* \pm}$	$\kappa_{B \pm}^{D K^{* \pm}}$	LHCb	$[33]$	As before
$B^{0} \rightarrow D K^{* 0}$	$\kappa_{B^{0}}^{D K^{* 0}}$	LHCb	$[53]$	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	β	HFLAV	$[13]$	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}(\pi \pi)$	ϕ_{s}	HFLAV	$[13]$	As before
$D \rightarrow K^{+} \pi^{-}$	$\cos \delta_{D}^{K \pi}, \sin \delta_{D}^{K \pi},\left(r_{D}^{K \pi}\right)^{2}, x^{2}, y$	CLEO-c	$[27]$	New
$D \rightarrow K^{+} \pi^{-}$	$A_{K \pi}, A_{K \pi}^{\pi \pi \pi^{0}}, r_{D}^{K \pi} \cos \delta_{D}^{K \pi}, r_{D}^{K \pi} \sin \delta_{D}^{K \pi}$	BESIII	$[28]$	New
$D \rightarrow h^{+} h^{-} \pi^{0}$	$F_{\pi \pi \pi^{0}}^{+}, F_{K K \pi^{+}}^{+}$	CLEO-c	$[54]$	As before
$D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$F_{4 \pi}^{+}$	CLEO-c+BESIII	$[26,54]$	Updated
$D \rightarrow K^{+} \pi^{-} \pi^{0}$	$r_{D}^{K \pi \pi^{0}}, \delta_{D}^{K \pi \pi^{0}}, \kappa_{D}^{K \pi \pi^{0}}$	CLEO-c+LHCb+BESIII	$[55-57]$	As before
$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_{D}^{K 3 \pi}, \delta_{D}^{K 3 \pi}, \kappa_{D}^{K 3 \pi}$	CLEO-c+LHCb+BESIII	$[49,55-57]$	As before
$D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{5}^{K} K}, \delta_{D}^{K K_{S}^{0} \pi}, \kappa_{D}^{K_{5}^{0} K \pi}$	CLEO	$[58]$	As before
$D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{S}^{0} K \pi}$	LHCb	$[59]$	As before

Input to LHCb γ combination

LHCb

LHCb γ combination

impact on charm mixing

$$
\gamma=63.8_{-3.7^{\circ}}^{\circ+3.5^{\circ}}
$$

$$
\begin{aligned}
& x=\left(3.98_{-0.49}^{+0.50}\right) \cdot 10^{-3} \\
& y=\left(6.36_{-0.19}^{+0.20}\right) \cdot 10^{-3}
\end{aligned}
$$

Unbinned model-independent method.

Anton Poluektov: Eur.Phys.J.C 78 (2018) 2, 121

- Project 2-D Dalitz plot onto 1D.
- Use amplitude model to associate each point in phase space to a phase difference $\delta^{\text {model }}$.
- $c_{i}, s_{i} \rightarrow C\left(\delta^{\text {model }}\right), S\left(\delta^{\text {model }}\right)$, functions C , S parameterised in a generic way (Fourier series)

Precision using various approaches, M
with $2 \times 10^{4} B^{ \pm} \rightarrow D K^{ \pm}$events and
$10^{4} D \bar{D}$ events

Expect precision between binned and model-dependent approach.

Other unbinned methods exists

- Anton Poluektov: Eur.Phys.J.C 78 (2018) 2, 121. Projects 2-D Dalitz plot onto 1D. Achieves precision between binned and model-dependent approach.
- Jeffrey V. Backus et al, arXiv:2211.05133, integrate over the 2-D Dalitz plot in an unbinned way. Get a precision of $\sim 5^{\circ}$ for similar data set sizes we use, however, comparison is difficult due to different assumptions on the values of γ and δ_{B}, and implementation differences in amplitude model.
- In contrast to these methods and the binned method, we do not do any integration, averaging or projection and therefore do not suffer the associated information loss.

Input to $\mathrm{LHCb} \gamma$ combination

LHCb

B decay	D decay	Ref.	Dataset	Status since Ref. [14]
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	[29]	Run 1\&2	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[30]	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1\&2	New
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-} \pi^{0}$	[19]	Run 1\&2	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$	[31]	Run 1\&2	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	[32]	Run 1\&2	As before
$B^{ \pm} \rightarrow D^{*} h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	[29]	Run 1\&2	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} h^{-}$	[33]	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[33]	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D h^{ \pm} \pi^{+} \pi^{-}$	$D \rightarrow h^{+} h^{-}$	[34]	Run 1	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} h^{-}$	[35]	Run 1\&2(*)	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	[35]	Run 1\&2(*)	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	[36]	Run 1	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	[37]	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	[38]	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm} \pi^{+} \pi^{-}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	[39]	Run 1\&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since Ref. [14]
$D^{0} \rightarrow h^{+} h^{-}$	$\Delta A_{C P}$	[24, 40, 41]	Run 1\&2	As before
$D^{0} \rightarrow K^{+} K^{-}$	$A_{C P}\left(K^{+} K^{-}\right)$	[16, 24, 25]	Run 2	New
$D^{0} \rightarrow h^{+} h^{-}$	$y_{C P}-y_{C P}^{K^{-} \pi^{+}}$	[42]	Run 1	As before
$D^{0} \rightarrow h^{+} h^{-}$	$y_{C P}-y_{C P}^{K-\pi^{+}}$	[15]	Run 2	New
$D^{0} \rightarrow h^{+} h^{-}$	ΔY	[43-46]	Run 1\&2	As before
$D^{0} \rightarrow K^{+} \pi^{-}$(Single Tag)	$R^{ \pm},\left(x^{ \pm}\right)^{2}, y^{ \pm}$	[47]	Run 1	As before
$D^{0} \rightarrow K^{+} \pi^{-}$(Double Tag)	$R^{ \pm},\left(x^{ \pm}\right)^{2}, y^{ \pm}$	[48]	Run 1\&2(*)	As before
$D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$\left(x^{2}+y^{2}\right) / 4$	[49]	Run 1	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	x, y	[50]	Run 1	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[52]	Run 2	As before
$D^{0} \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}\left(\mu^{-}\right.$tag $)$	$x_{C P}, y_{C P}, \Delta x, \Delta y$	[17]	Run 2	New

BES III and others

Decay	Parameters	Source	Ref.	Status since Ref. $[14]$
$B^{ \pm} \rightarrow D K^{* \pm}$	$\kappa_{B \pm}^{D K^{* \pm}}$	LHCb	$[33]$	As before
$B^{0} \rightarrow D K^{* 0}$	$\kappa_{B^{0}}^{D K^{* 0}}$	LHCb	$[53]$	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	β	HFLAV	$[13]$	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}(\pi \pi)$	ϕ_{s}	HFLAV	$[13]$	As before
$D \rightarrow K^{+} \pi^{-}$	$\cos \delta_{D}^{K \pi}, \sin \delta_{D}^{K \pi},\left(r_{D}^{K \pi}\right)^{2}, x^{2}, y$	CLEO-c	$[27]$	New
$D \rightarrow K^{+} \pi^{-}$	$A_{K \pi}, A_{K \pi}^{\pi \pi \pi^{0}}, r_{D}^{K \pi} \cos \delta_{D}^{K \pi}, r_{D}^{K \pi} \sin \delta_{D}^{K \pi}$	BESIII	$[28]$	New
$D \rightarrow h^{+} h^{-} \pi^{0}$	$F_{\pi \pi \pi^{0}}^{+}, F_{K K \pi^{+}}^{+}$	CLEO-c	$[54]$	As before
$D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$F_{4 \pi}^{+}$	CLEO-c+BESIII	$[26,54]$	Updated
$D \rightarrow K^{+} \pi^{-} \pi^{0}$	$r_{D}^{K \pi \pi^{0}}, \delta_{D}^{K \pi \pi^{0}}, \kappa_{D}^{K \pi \pi^{0}}$	CLEO-c+LHCb+BESIII	$[55-57]$	As before
$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_{D}^{K 3 \pi}, \delta_{D}^{K 3 \pi}, \kappa_{D}^{K 3 \pi}$	CLEO-c+LHCb+BESIII	$[49,55-57]$	As before
$D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{5}^{K} K}, \delta_{D}^{K K_{S}^{0} \pi}, \kappa_{D}^{K_{5}^{0} K \pi}$	CLEO	$[58]$	As before
$D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{S}^{0} K \pi}$	LHCb	$[59]$	As before

$$
\gamma=63.8_{-3.7^{\circ}}^{\circ+3.5{ }^{\circ}}
$$

Input to $\mathrm{LHCb} \gamma$ combination

LHCb

B decay
$B^{ \pm} \rightarrow$
$B^{0} \rightarrow$
$B^{0} \rightarrow$
$B^{0} \rightarrow$
$B^{0} \rightarrow$
$B_{s}^{0} \rightarrow$
$B_{s}^{0} \rightarrow$
D dec
$D^{0} \rightarrow$

Too much for one slide to be readable. Key point: It's a lot.

And there's more, e.g.
BES III measurements on $D \rightarrow$
$K_{S} \pi^{+} \pi^{-} \pi^{0}$ arXiv:2305.03975 (2023)
$K^{+} K^{-} \pi^{+} \pi^{-} \quad$ PRD 107 (2023) 3, 032009

BES III and others

Parameters	Source	Ref.	Status since
			Ref. [14]
$\kappa_{B \pm}^{D K^{* \pm}}$	LHCb	[33]	As before
$\kappa_{B 0}^{D K^{* 0}}$	LHCb	[53]	As before
β	HFLAV	[13]	As before
т) ϕ_{s}	HFLAV	[13]	As before
$\cos \delta_{D}^{K \pi}, \sin \delta_{D}^{K \pi},\left(r_{D}^{K \pi}\right)^{2}, x^{2}, y$	CLEO-c	[27]	New
$A_{K \pi}, A_{K \pi}^{\pi \pi \pi^{0}}, r_{D}^{K \pi} \cos \delta_{D}^{K \pi}, r_{D}^{K \pi} \sin \delta_{D}^{K \pi}$	BESIII	[28]	New
$F_{\pi \pi \pi^{0}}^{+}, F_{K K \pi^{0}}^{+}$	CLEO-c	[54]	As before
$F_{4 \pi}^{+}$	CLEO-c+BESIII	[26, 54]	Updated
$r_{D}^{K \pi \pi^{0}}, \delta_{D}^{K \pi \pi^{0}}, \kappa_{D}^{K \pi \pi^{0}}$	CLEO-c+LHCb+BESIII	[55-57]	As before
$r_{D}^{K 3 \pi}, \delta_{D}^{K 3 \pi}, \kappa_{D}^{K 3 \pi}$	CLEO-c+LHCb+BESIII	[49, 55-57]	As before
$r_{D}^{K_{5}^{0} K \pi}, \delta_{D}^{K{ }_{5}^{0} K \pi}, \kappa_{D}^{K_{5}^{0} K \pi}$	CLEO	[58]	As before
$r_{D}^{K_{\text {S }}^{0} K \pi}$	LHCb	[59]	As before

LHCb measurements with

$$
\begin{gathered}
B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow \\
K^{+} K^{-} \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{+} \pi^{-} \\
\text {arXiv:2301.10328 (2023) }
\end{gathered}
$$

$$
\gamma=63.8_{-3.7^{\circ}}^{\circ+3.5}
$$

LHCb model-independent mixing with $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

Same BES III input also critical for charm mixing

first observation of non-zero $x=\frac{\Delta m}{\Gamma}$, i.e. of a mass difference between the two charm mass eigenstates.

$$
\begin{aligned}
x & =\left(3.98_{-0.54}^{+0.56}\right) \times 10^{-3} \\
y & =\left(4.6_{-1.4}^{+1.5}\right) \times 10^{-3} \\
|q / p| & =0.996 \pm 0.052 \\
\phi & =0.056_{-0.051}^{+0.047}
\end{aligned}
$$

BESIII: PRL 124 (2020) 24, 241802 $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$

LHCb: PRL 127 (2021) 11, 111801
Method: Phys.Rev. D99 (2019) no.1, 012007

$\mathrm{B} \pm \rightarrow \mathrm{DK}^{ \pm}$

[^1] 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Trees and loops

Trees

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

$$
\text { JHEP } 06 \text { (2014) 040, JHEP } 07 \text { (2020) } 177
$$

Trees and loops

Trees

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

$$
\text { JHEP } 06 \text { (2014) 040, JHEP } 07 \text { (2020) } 177
$$

Trees and loops

Trees

"New Physics" in trees generally seen as less likely than in loops. (Lenz et al find however that there is room for NP in trees that could affect γ by several degrees.) In any case: would like to compare tees and loops.

$$
\text { JHEP } 06 \text { (2014) 040, JHEP } 07 \text { (2020) } 177
$$

Unitarity triangle
 geometric representation of Standard Model constraints

Unitarity triangle

Unitarity triangle

Unitarity triangle

What we're aiming for

BESIII +LHCb
+BELLE $+B E L L E$

Measurment of γ with LHCb \& BES III data with model-independent binned method.

BESIII: PRL 124 (2020) 24, 241802 BESIII: PRD 102 (2020) 5, 052008
LHCb: JHEP 02 (2021) 169
$\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}$

$$
\psi^{\prime \prime} \rightarrow D \bar{D}
$$

$$
B^{+} \rightarrow D K^{+}
$$

$$
B^{-} \rightarrow D K^{-}
$$ best individual

measurement of γ best individual
measurement of γ

[^2] (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Measurements of c_{i}, s_{i} at BES III

Model-informed, optimised binning

Measurements of c_{i}, s_{i} at BES III

Model independent, binned γ fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

- Binned decay rate:

$$
\begin{array}{rll}
\Gamma\left(B^{ \pm} \rightarrow D\left(K_{s} \pi^{+} \pi^{-}\right) K^{ \pm}\right)_{i}= & \mathcal{T}_{i} \text { known from fla } \\
\mathcal{T}_{i} & +r_{B}^{2} \mathcal{I}_{-i}+2 r_{\mathrm{B}} \sqrt{\mathcal{T}_{i} \mathcal{T}_{-i}}\left\{c_{i} \cos (\delta \pm \gamma)+\mathrm{s}_{\mathrm{i}} \sin (\delta \pm \gamma)\right\} & \text { specifc } D \text { decays }
\end{array}
$$

(weighted) average of $\cos (\delta \bar{D})$ and $\sin (\delta \bar{D})$ over bin i , where $\delta_{D}=$ phase difference between $\mathrm{D} \rightarrow \mathrm{Ks} \mathrm{\pi} \mathrm{\pi}$ and Dbar \rightarrow Ksпп

- Binning such that such that $\mathrm{c}_{\mathrm{i}}=\mathrm{c}_{-\mathrm{i}}, \mathrm{s}_{\mathrm{i}}=-\mathrm{s}_{-\mathrm{i}}$
- Distribution sensitive to $\mathrm{c}_{\mathrm{i}}, \mathrm{si}_{\mathrm{i}}, \mathrm{r}_{\mathrm{B}}, \delta$ and γ.
- $\mathrm{Ci}_{\mathrm{i}}, \mathrm{Si}$, measured at charm threshold.

Model-independent, binned approach

One complex number per bin-pair, $c_{i}+\mathrm{i} s_{i}$, contains the key information uniquely accessible at CLEO-c/BES III, which is related to the phases the D^{0} and \bar{D}^{0} decay amplitudes.

Rotate and stretch

fit parameters

$$
\delta^{\text {corr }}=\sum_{i=0}^{N} \sum_{j=0}^{\frac{N-i}{2}} \stackrel{\square}{i}_{i, 2 j+1}^{\downarrow} \stackrel{\rightharpoonup}{i}_{\left(z_{+}^{\prime}\right)}^{\downarrow} \stackrel{(2 j+1) \text { th order Legendre polynomials }}{P_{2 j+1}^{\downarrow}}\left(z_{-}^{\prime \prime}\right)
$$

only odd powers of $z_{-}^{\prime \prime} \propto s_{-}-s_{+}$, ensures that $\delta^{\text {corr }}\left(s_{+}, s_{-}\right)=-\delta^{\text {corr }}\left(s_{-}, s_{+}\right)$

Testing the method

Generate Babar \& BELLE amplitude model with modified phase difference $\delta\left(s_{+}, s_{-}\right)$

$$
\delta_{1}^{\mathrm{bias}}=\operatorname{erf}\left(\frac{s_{+}-s_{-}}{\varepsilon}\right) g\left(s_{+}, s_{-}\right)
$$

$$
\text { where } \mathrm{g} \text { is a 2-D Gaussian, }
$$

$$
\text { mirror reflected at } s_{+}=s_{-}
$$

s_{+}
Fit starts from un-modified model - will it be able to find $\delta^{\text {corr }} \approx \delta_{1}^{\text {bias }}$ to a sufficient approximation?

[^0]: LHCb yields as in JHEP 02 (2021) 169
 BESIII yields as in: PRL 124 (2020) 24, 241802, PRD 101 (2020) 11200

[^1]: Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett.

[^2]: Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260

