Three-Hadron Systems from Lattice QCD

Andrew W. Jackura

William & Mary

Department of Physics

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA13/ATHOS8)

May 28 - June 01, 2024

Three-Hadron Spectroscopy

Many hadrons in the excited QCD spectrum decay into three (or more) particles

- e.g., the very exciting T_{cc} tetraquark candidate

$$D \longrightarrow D \longrightarrow T_{cc}$$

$$D \longrightarrow T_{cc}$$

$$\mathcal{M}_{DD\pi o DD\pi} \sim -rac{g_{Tcc}^2}{s-s_{Tcc}}$$

$$\sqrt{s_{Tcc}} = M_{Tcc} - i\Gamma_{Tcc}/2$$

R. Aaij et al., [LHCb Collaboration] Nature Physics **18**, 751–754 (2022)

Lattice QCD is a numerical tool to estimate low-energy QCD observables

- Formulated on finite, discretized, Euclidean spacetime
- Extract finite-volume energy levels from correlation functions

QCD gauge configurations

finite volume spectrum

Lattice QCD is a numerical tool to estimate low-energy QCD observables

- Formulated on finite, discretized, Euclidean spacetime
- Extract finite-volume energy levels from correlation functions

finite volume spectrum

Very hard problem: (No time to discuss

...misses multi-hadron couplings (i.e., amplitudes)...
...an incomplete picture...

Lattice QCD is a numerical tool to estimate low-energy QCD observables

- Formulated on finite, discretized, Euclidean spacetime
- Extract finite-volume energy levels from correlation functions

However, can extract amplitudes from lattice QCD

- Key Map finite-volume energies to infinite-volume objects (via Lüscher)
- A path toward model independent resonance parameters from QCD

Lattice QCD is a numerical tool to estimate low-energy QCD observables

- Formulated on finite, discretized, Euclidean spacetime
- Extract finite-volume energy levels from correlation functions

However, can extract amplitudes from lattice QCD

- Key Map finite-volume energies to infinite-volume objects (via Lüscher)
- A path toward model independent resonance parameters from QCD

...focus on this part of process

Let's review the *two-hadron case* as a template for three-hadron systems

• e.g., elastic scattering of spinless particles, with restricted energy region

$$i\mathcal{M}_2 = \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} + \begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \end{array} + \begin{array}{c} \\ \end{array} + \cdots \end{array}$$

Let's review the *two-hadron case* as a template for three-hadron systems

• e.g., elastic scattering of spinless particles, with restricted energy region

$$i\mathcal{M}_2 = \mathcal{M} + \mathcal{M}_2 + \mathcal{M}_3 + \mathcal{M}_4 + \mathcal{$$

= isolate singular behavior, re-sum short-distance 'stuff' into new real function

$$\sim$$
 real function $i
ho$

two-body phase space

$$\rho \sim \sqrt{1 - \frac{4m^2}{s}}$$

Let's review the *two-hadron case* as a template for three-hadron systems

• e.g., elastic scattering of spinless particles, with restricted energy region

$$i\mathcal{M}_2 = \mathbf{M} + \mathbf{M}_2 + \mathbf{$$

K-Matrix

- short-distance dynamics
- constrained from data (exp. or th.)

Let's review the two-hadron case as a template for three-hadron systems

• e.g., elastic scattering of spinless particles, with restricted energy region

K matrix is unphysical ...

... choose convenient parameterizations (must preserve unitarity)

elastic scattering $(\mathcal{K}_2^{-1} \sim q \cot \delta)$

$$\mathcal{K}_2^{-1} \sim -\frac{1}{a} + \frac{1}{2}rq^2 + \cdots$$

near threshold scattering (effective range)

$$\mathcal{K}_2^{-1} \sim \frac{m_0^2 - s}{\sqrt{s} \, \Gamma}$$

Isolated narrow resonance (Breit-Wigner)

generically — polynomials and poles

$$\mathcal{K}_2 \sim \sum_j \frac{g_j^2}{m_j^2 - s} + \sum_j \gamma_j s^j$$

K-Matrix

- short-distance dynamics
- constrained from data (exp. or th.)

Let's review the *two-hadron case* as a template for three-hadron systems

• e.g., elastic scattering of spinless particles, with restricted energy region

$$i\mathcal{M}_2 = \mathbf{M} = \mathbf{M} + \mathbf{M}$$

S matrix unitarity

$$\operatorname{Im} \mathcal{M}_2 = \rho |\mathcal{M}_2|^2$$

Let's review the *two-hadron case* as a template for three-hadron systems

- e.g., elastic scattering of spinless particles, with restricted energy region
- Connect K matrix to finite-volume through correlation function

$$C_L^{(\mathsf{M})}(E) = i \sum_{\mathfrak{n}} \frac{Z_{\mathfrak{n}} Z_{\mathfrak{n}}^{\dagger}}{E - E_{\mathfrak{n}}} \qquad \mathbf{p} = \frac{2\pi}{L} \mathbf{n}$$

$$= \sqrt{V} + \sqrt{V} + \sqrt{V} + \sqrt{V} + \cdots$$

Let's review the *two-hadron case* as a template for three-hadron systems

- e.g., elastic scattering of spinless particles, with restricted energy region
- Connect K matrix to finite-volume through correlation function

$$C_L^{(\mathsf{M})}(E) = i \sum_{\mathfrak{n}} \frac{Z_{\mathfrak{n}} Z_{\mathfrak{n}}^{\dagger}}{E - E_{\mathfrak{n}}}$$

$$= 0 + 0 + 0 + 0 + 0 + 0 + \cdots$$

= Follow similar procedure as before ...

... additional correction for finite-volume effects

$$\overbrace{V} \sim \bigcirc + F_{2,L}$$

as before

Finite-volume correction (known)

Let's review the *two-hadron case* as a template for three-hadron systems

- e.g., elastic scattering of spinless particles, with restricted energy region
- Connect K matrix to finite-volume through correlation function

$$\mathcal{C}_L^{(\mathsf{M})}(E) = i \sum_{\mathfrak{n}} \frac{Z_{\mathfrak{n}} Z_{\mathfrak{n}}^\dagger}{E - E_{\mathfrak{n}}} \qquad \qquad \text{what we compute via lattice QCD}$$

$$\longrightarrow \frac{i\mathcal{R}_L}{1 + \mathcal{K}_2 \cdot F_{2,L}}$$

Let's review the *two-hadron case* as a template for three-hadron systems

- e.g., elastic scattering of spinless particles, with restricted energy region
- Connect K matrix to finite-volume through correlation function

$$\mathcal{C}_L^{(\mathrm{M})}(E)=i\sum_{\mathfrak{n}}rac{Z_{\mathfrak{n}}Z_{\mathfrak{n}}^{\dagger}}{E-E_{\mathfrak{n}}}$$
 what we compute via lattice QCD

Spectrum satisfies

$$ightarrow rac{i\mathcal{R}_L}{1+\mathcal{K}_2\cdot F_{2,L}}$$

$$\det[1 + \mathcal{K}_2 \cdot F_{2,L}]\Big|_{E=E_{\mathfrak{n}}} = 0$$

Three-Hadron Systems

Follow recipe for three-hadron scattering

Find three-body quantization condition (consider elastic 3-body scattering, no 2-3 coupling)

parameterize & constrain

known finite-volume effects

Equivalence proofs

AJ et al. [JPAC] Phys. Rev. D 100, 034508 (2019)

T. Blanton and S. Sharpe Phys. Rev. D 102, 054515 (2020)

AJ Phys. Rev. D 108, 034505 (2023)

Three-Hadron Systems

Follow recipe for three-hadron scattering

• Find three-body quantization condition (consider elastic 3-body scattering, no 2-3 coupling)

$$\det\left[1 + \mathcal{K}_3 \cdot F_{3,L}\right]\Big|_{E=E_{\mathfrak{n}}} = 0$$

known finite-volume effects

parameterize & constrain

Given a three-body K matrix, e.g., for three pions ...

... we need to reconstruct the three hadron scattering amplitude ...

... more challenging than 2-body case ...

N.B. constraining the K matrix via lattice QCD is hard, but I will assume it can be done

iivalence proofs

AJ et al. [JPAC]

Phys. Rev. D 100, 034508 (2019)

T. Blanton and S. Sharpe Phys. Rev. D **102**, 054515 (2020)

AJ

Phys. Rev. D **108**, 034505 (2023)

Increased number of degrees of freedom

$$\sqrt{\sigma_k}$$
 isobar 'mass'

$$3m \le \sqrt{s} < \infty$$

$$2m \le \sqrt{\sigma_k} < \sqrt{s} - m$$

Increased number of degrees of freedom

• 8 kinematic variables — after partial wave projection, 3 variables (s, σ_k, σ_p) or (s, k, p)

$$3m \le \sqrt{s} < \infty$$

$$2m \le \sqrt{\sigma_k} < \sqrt{s} - m$$

Increased number of degrees of freedom

- 8 kinematic variables after partial wave projection, 3 variables (s, σ_k, σ_p) or (s, k, p)
- Scattering equations are integral equations

$$\mathcal{M}_3 = \mathcal{D} + \int \int \mathcal{L} \cdot \mathcal{T} \cdot \mathcal{R}$$

integrals in k, p

Increased number of degrees of freedom

- 8 kinematic variables after partial wave projection, 3 variables (s, σ_k, σ_p) or (s, k, p)
- Scattering equations are integral equations

$$\mathcal{M}_3 = \mathcal{D} + \int \int \mathcal{L} \cdot \mathcal{T} \cdot \mathcal{R}$$

$$\mathcal{D} = \mathcal{M}_2 \mathcal{G} \mathcal{M}_2 + \mathcal{M}_2 \int \mathcal{G} \mathcal{D}$$

$$= + \cdots + \cdots + \cdots$$

no 3-body K matrix

Increased number of degrees of freedom

- 8 kinematic variables after partial wave projection, 3 variables (s, σ_k, σ_p) or (s, k, p)
- Scattering equations are integral equations

$$\mathcal{M}_3 = \mathcal{D} + \int\!\!\int \mathcal{L} \cdot \mathcal{T} \cdot \mathcal{R}$$

$$\mathcal{T} = \mathcal{K}_3 + \int\!\!\int \mathcal{K}_3 \cdot \mathcal{C} \cdot \mathcal{T}$$

rescattering functions

$$\mathcal{L}, \mathcal{R}, \mathcal{C} \sim 1 + \mathcal{M}_2 + \mathcal{D}$$

$$\sim$$
 $=$ $+$ \times $+$ \times $+$ \cdots

Three-Hadron Systems from Lattice QCD

Follow recipe for three-hadron scattering

- Compute finite-volume spectrum
- Constrain K matrix with three-body quantization condition
- Reconstruct scattering amplitude via integral equations
- Analytically continue to complex energy plane to search for poles

103 energy levels described by three numbers

$$m_{\pi}, \, a_{\pi\pi}^{I=2}, \, \mathcal{K}_{3, \mathrm{iso}}^{I=3}$$

M. Hansen et al. [HadSpec] Phys. Rev. Lett. **126**, (2021) 012001

 5×10^8

 $|m_\pi^2 \mathcal{M}_3|^2$

Amplitude reconstruction — since $\mathcal{K}_{3,iso} \approx 0$, amplitude dominated by one-particle exchanges

7.5

7.0 -

Going Further

Most* work so far has revolved around three-body system in total S wave

- Interesting systems usually have non-zero partial waves
- Need to project integral equations to definite J^{P} amplitudes

$I_{3\pi}^G$	J^{PC}	$([\pi\pi]^I_\ell\pi)_L$
	0-+	$([\pi\pi]_S^2\pi)_S$
3-	1-+	none
	1++	$([\pi\pi]_S^2\pi)_P$
2-	0	$([\pi\pi]_S^2\pi)_S, ([\pi\pi]_P^1\pi)_P$
	1	$([\pi\pi]_P^1\pi)_P$
	1+-	$([\pi\pi]_S^2\pi)_P, ([\pi\pi]_P^1\pi)_S, ([\pi\pi]_P^1\pi)_D$
	0-+	$([\pi\pi]_S^{0,2}\pi)_S, ([\pi\pi]_P^1\pi)_P$
1-	1-+	$([\pi\pi]_P^1\pi)_P$
	1++	$([\pi\pi]_S^{0,2}\pi)_P, ([\pi\pi]_P^1\pi)_S, ([\pi\pi]_P^1\pi)_D$
0-	0	$([\pi\pi]_P^1\pi)_P$
	1	$([\pi\pi]_P^1\pi)_P$
	1+-	$([\pi\pi]_P^1\pi)_S, ([\pi\pi]_P^1\pi)_D$

Follow usual procedure to construct partial wave amplitudes

Couple to definite parity (LS basis) since interested in spectroscopy

Rotational Dependence

- Clebsch-Gordan coefficients
- Wigner D matrix elements
- associated factors

Partial Wave Amplitudes

- depends on 'energy' variables only
- Matrix in LS-space for given J^P

$$\mathcal{R}_{J^P} \sim \sum_{m_J} Z_{L'S'}^{Jm_J*}(\mathbf{\hat{p}}) Z_{LS}^{Jm_J}(\mathbf{\hat{k}})$$

$$Z_{LS}^{Jm_J}(\hat{\mathbf{k}}) = \sqrt{4\pi(2L+1)} \sum_{\lambda} \langle J\lambda | L0, S\lambda \rangle \ D_{m_J\lambda}^{(J)}(\hat{\mathbf{k}}) \ Y_{S\lambda}^*(\hat{\mathbf{a}})$$

Projection of one-particle exchange

Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis

$$\mathcal{G}_{\lambda'\lambda}(\mathbf{p},\mathbf{k})=rac{\mathcal{H}_{\lambda'\lambda}(\mathbf{p},\mathbf{k})}{u-m^2+i\epsilon}$$
 depends on spins of isobars and their decay angles exchange propagator

Projection of one-particle exchange

Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis

$$\mathcal{G}_{\lambda'\lambda}(\mathbf{p}, \mathbf{k}) = \frac{\mathcal{H}_{\lambda'\lambda}(\mathbf{p}, \mathbf{k})}{u - m^2 + i\epsilon}$$

depends on spins of isobars and their decay angles

exchange propagator

$$=\sum_{J^P}\mathcal{G}^{J^P}\,\mathcal{R}_{J^P}$$

$$\Longrightarrow$$

Known coefficients for particular scattering channel

- could contain spurious singular behavior
- must be compensated by three-body K matrix

$$\mathcal{G}^{J^P} = \mathcal{K}_{\mathcal{G}}^{J^P} + \mathcal{T}^{J^P} Q_0(\zeta)$$

$$Q_0(\zeta) = \frac{1}{2} \log \left(\frac{\zeta + 1}{\zeta - 1} \right)$$

Projection of one-particle exchange

- Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis
- Compare to what is usually done in phenomenological studies

 parameterizing K matrices anyway, why bother with some regular piece?

$$\mathcal{G}^{J^P} \to \int dz \, \mathcal{R}_{J^P}(z) \, \mathcal{G}(z)$$
$$= \mathcal{N}(\zeta) \int dz \, \frac{\mathcal{R}_{J^P}(z)}{\zeta - z}$$
$$\sim e^J(\zeta)$$

Lattice FV framework

- quantization conditions rely on systematically controlling finitevolume correction
- K matrix in QC must be consistently defined with scattering equations
- Cannot ignore pieces of the OPE!

Look at lowest lying waves, e.g., $J^P = 0^-$

$I_{3\pi}^G$	J^{PC}	$([\pi\pi]^I_\ell\pi)_L$
	0	$([\pi\pi]_S^2\pi)_S, ([\pi\pi]_P^1\pi)_P$
2^{-}	1	$([\pi\pi]_P^1\pi)_P$
	1+-	$([\pi\pi]_S^2\pi)_P, ([\pi\pi]_P^1\pi)_S, ([\pi\pi]_P^1\pi)_D$

$$\mathcal{G}^{J^{P}=0^{-}} = -\frac{1}{2pk} \begin{pmatrix} 0 & \frac{\sqrt{3}}{q_{p}^{\star}} \gamma_{p} k \\ \frac{\sqrt{3}}{q_{k}^{\star}} \gamma_{k} p & \frac{3}{q_{k}^{\star}} q_{p}^{\star} p k g_{pk} \end{pmatrix} + \frac{1}{2pk} \begin{pmatrix} 1 & \frac{\sqrt{3}}{q_{p}^{\star}} k f_{pk} \\ \frac{\sqrt{3}}{q_{k}^{\star}} p f_{kp} & \frac{3}{q_{k}^{\star}} q_{p}^{\star} p k f_{pk} f_{kp} \end{pmatrix} Q_{0}(\zeta_{pk})$$

$$f_{pk} = \gamma_p \left(\frac{\beta_p \omega_k}{k} + \zeta_{pk} \right)$$
$$g_{pk} = \gamma_p \gamma_k \left(\frac{\beta_p \omega_k}{k} + \frac{\beta_k \omega_p}{p} + \zeta_{pk} \right)$$

 $f_{kp} = f_{pk}(k \leftrightarrow p)$

Look at lowest lying waves, e.g., $J^P=0^-$

$I_{3\pi}^G$	J^{PC}	$([\pi\pi]^I_\ell\pi)_L$
	0	$([\pi\pi]_S^2\pi)_S, ([\pi\pi]_P^1\pi)_P$
2^{-}	1	$([\pi\pi]_P^1\pi)_P$
	1+-	$([\pi\pi]_S^2\pi)_P, ([\pi\pi]_P^1\pi)_S, ([\pi\pi]_P^1\pi)_D$

AJ and R. Briceño Phys. Rev. D. **109**, (2024) 096030

Exploring Analytic Continuations

Spectral analyses require continuing to pole positions

- Community is building confidence in robust solution strategies
- e.g., exploring Efimov physics with relativistic three-body framework

Exploring Analytic Continuations

Spectral analyses require continuing to pole positions

- Community is building confidence in robust solution strategies
- e.g., exploring Efimov physics with relativistic three-body framework
- Gain deeper understanding on analytic structure

Summary

Lots of progress on 3-body spectroscopy from QCD

- Finite-volume framework has been in place for a while, now going through use cases
- Applications of numerical solutions for the on-shell integral equations
- Formal/numerical extensions to non-zero partial waves
- Gaining insight into analytic continuation of amplitudes

More results on the horizon!

K Matrix Parameterizations

To constrain *K* matrix, parameterize partial wave components

Saturate sum to include enough freedom for FV irrep

$$\det\left[1 + \mathcal{K}_3 \cdot F_{3,L}\right]\Big|_{E=E_n} = 0 \quad \Longrightarrow \quad \mathcal{M}_3^{J^P} = \mathcal{M}_3^{J^P} \left[\mathcal{K}_2, \mathcal{K}_3^{J^P}, \mathcal{I}, \mathcal{G}^{J^P}\right]$$