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Three-Hadron Spectroscopy

Many hadrons in the excited QCD spectrum decay into three (or more) particles
e.g., the very exciting 1. tetraquark candidate
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See talk by S. Dawid today



Hadron Spectroscopy & Lattice QCD

Lattice QCD is a numerical tool to estimate low-energy QCD observables finite volume spectrum

Formulated on finite, discretized, Euclidean spacetime A -
Extract finite-volume energy levels from correlation functions c—
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Hadron Spectroscopy & Lattice QCD
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...misses multi-hadron couplings (i.e., amplitudes)...

...an incomplete picture...



Hadron Spectroscopy & Lattice QCD

Lattice QCD is a numerical tool to estimate low-energy QCD observables
Formulated on finite, discretized, Euclidean spacetime
Extract finite-volume energy levels from correlation functions

However, can extract amplitudes from lattice QCD
Key — Map finite-volume energies to infinite-volume objects (via Luscher)
A path toward model independent resonance parameters from QCD



Hadron Spectroscopy & Lattice QCD
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...focus on this part of process



Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region
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restricted kinematic window
(elastic scattering region)
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= isolate singular behavior, re-sum short-distance ‘stuff’ into new real function
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region

lhe 2m 3m
—0—o0 O— Vs

restricted kinematic window
(elastic scattering region)
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K-Matrix
— Sshort-distance dynamics
— constrained from data (exp. or th.)
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Two-Hadron Systems

K matrix is unphysical ...

... choose convenient parameterizations (must preserve unitarity)

elastic scattering (C; ' ~ ¢ cot 0)
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Isolated narrow resonance (Breit-Wigner)
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems

e.g., elastic scattering of spinless particles, with restricted energy region

lhe 2m 3m
—O O O > /s

restricted kinematic window
(elastic scattering region)
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region
Connect K matrix to finite-volume through correlation function
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region
Connect K matrix to finite-volume through correlation function

AVAl
C(M)E:i nén
M(5) =iy

n

O R 8:C 208 C-E=

Follow similar procedure as before ...

... additional correction for finite-volume effects

DO

Finite-volume correction (known)
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Two-Hadron Systems

Let’s review the two-hadron case as a template for three-hadron systems
e.g., elastic scattering of spinless particles, with restricted energy region
Connect K matrix to finite-volume through correlation function

Jf what we compute via lattice QCD
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Two-Hadron Systems

Spectrum satisfies

det[l + ICo - F27L]

See talks by J. Dudek (Tue.), F. Ortega-Gama (Wed.), A. Rodas (Fri.)

E=F,

=0
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Three-Hadron Systems

Follow recipe for three-hadron scattering

* Find three-body quantization condition (consider elastic 3-body scattering, no 2-3 coupling)

A
lhe 2m 3m
—O O O O> Vs
known finite-volume effects
parameterize & constrain
Equivalence proofs

AJ et al. [JPAC]

Phys. Rev. D 100, 034508 (2019)

T. Blanton and S. Sharpe

Phys. Rev. D 102, 054515 (2020)
M. Hansen and S. Sharpe See talk by Y. Feng next é\kjm Rev. D 108, 034505 (2023
Phys. Rev. D 90, (2014) 116003  and many more... yr. g ys. Rev. : (2023) 46



Ihree-Hadron Systems

=

Given a three-body K matrix, e.qg., for three pions ...
... we need to reconstruct the three hadron scattering amplitude ...

... more challenging than 2-body case ...

N.B. constraining the K matrix via lattice QCD is hard, but | will assume it can be done

J
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Challenges in the three-hadron scattering

Increased number of degrees of freedom

pair (isobar)

3-body plane @ fixed S

spectator

\/ O} isobar ‘mass’
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Challenges in the three-hadron scattering

Increased number of degrees of freedom
- 8 kinematic variables — after partial wave projection, 3 variables (s, o, ap) or (s, k, p)
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Challenges in the three-hadron scattering

Increased number of degrees of freedom
8 kinematic variables — after partial wave projection, 3 variables (s, o, ap) or (s, k, p)

Scattering equations are integral equations

M3=D+//£-T-R

integrals ink, p
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Challenges in the three-hadron scattering

Increased number of degrees of freedom
8 kinematic variables — after partial wave projection, 3 variables (s, o, ap) or (s, k, p)

Scattering equations are integral equations

M3=D+//£-T-R

D:MQQMQ—I-MQ/QD

>-S< ) >?< - W@

no 3-body K matrix
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Challenges in the three-hadron scattering

Increased number of degrees of freedom
8 kinematic variables — after partial wave projection, 3 variables (s, o, ap) or (s, k, p)

Scattering equations are integral equations

M3=D+//£-T-R
T:/c3+///c3.c-’r

rescattering functions

LR,C~1+Mos+D

XX

%
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Three-Hadron Systems from Lattice QCD

Follow recipe for three-hadron scattering
Compute finite-volume spectrum
Constrain K matrix with three-body quantization condition
Reconstruct scattering amplitude via integral equations
Analytically continue to complex energy plane to search for poles
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3" from Lattice QCD
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31 from Lattice QCD m. ~ 391 MeV

Amplitude reconstruction — since % 5 ;, & 0, amplitude dominated by one-particle exchanges
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Going Further

Most* work so far has revolved around three-body system in total S wave

Interesting systems usually have non-zero partial waves

Need to project integral equations to definite Jv amplitudes
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Partial Wave Amplitudes

Follow usual procedure to construct partial wave amplitudes

Couple to definite parity (LS basis) since interested in spectroscopy

Rotational Dependence
— Clebsch-Gordan coefficients
— Wigner D matrix elements

M q = g M 3‘] i R P — associated factors
P

Partial Wave Amplitudes

— depends on ‘energy’ variables only
— Matrix in LS-space for given J*

Z%7 (k) = /An(2L +1) Y (JAILO, SA) DY) (k) Y, (8)
A

27



Partial Wave Amplitudes

Projection of one-particle exchange
Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis

depends on spins of isobars and their decay angles

Haa(p, k)

u— m? —+ e

g)\’)\(p7 k) —

exchange propagator

AJ and R. Briceno
Phys. Rev. D. 109, (2024) 096030
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Partial Wave Amplitudes

Projection of one-particle exchange
Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis

depends on spins of isobars and their decay angles

Haa(p, k)

u— m? —+ e

g)\’)\(p7 k) —

exchange propagator

Known coefficients for particular scattering channel
— could contain spurious singular behavior
— must be compensated by three-body K matrix

p
p— ZQJP RJP
JP

— G'" =KL + T Qu(¢)

1 C+1
AJ and R. Bricefno QO(C) = — log <—)
29
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Partial Wave Amplitudes

Projection of one-particle exchange
» Most convenient to start in helicity basis (simple Lorentz boosting), then recouple to LS basis
« Compare to what is usually done in phenomenological studies

G(z) — N (z)

C— 2 O((C — Z)O) Ignore

— parameterizing K matrices anywavy,
— N(C) + N(Z) (C) why bother with some regular piece?

G — % G — %

07"~ [4:Ry0(2)0(2)
Lattice FV framework
— _/\/'((:) dz Rr (Z) — quantization conditions rely on
C — < systematically controlling finite-

volume correction
J — K matrix in QC must be consistently
~ € (C) defined with scattering equations
— Cannot ignore pieces of the OPE!

AJ and R. Briceno
Phys. Rev. D. 109, (2024) 096030
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Partial Wave Amplitudes

Look at lowest lying waves, e.g., J© =0
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Phys. Rev. D. 109, (2024) 096030 fk:p — fpk(k VAN p) 31



Partial Wave Amplitudes

Look at lowest lying waves, e.g., J© =0

1§ | Jgre ([r7)em)L
0~ ([rm)gm)s, ([nm)pm)p
2 17~ ([rm]pm)p
1+ ([rmlgm)p, ([nm]pm)s, ([77]pm)D

== Treal
== imag

[ISW — 2] "5 JOp My = 2.1

gJPZO_

2
7

m

AJ and R. Briceno
Phys. Rev. D. 109, (2024) 096030



Exploring Analytic Continuations

Spectral analyses require continuing to pole positions
- Community is building confidence in robust solution strategies
* e.g., exploring Efimov physics with relativistic three-body framework
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Exploring Analytic Continuations

Spectral analyses require continuing to pole positions
Community is building confidence in robust solution strategies
e.g., exploring Efimov physics with relativistic three-body framework
Gain deeper understanding on analytic structure

: mirror pole sheet —1
Efimov states 3¢ |t ff loops
sheet 0
(physical)

resonance
pole loops

sheet +1

conjectured sheet +2
“missing” poles

S. Dawid, M. Islam, R. Briceno, AJ
Phys. Rev. A109, (2024) 043325



Summary

Lots of progress on 3-body spectroscopy from QCD
Finite-volume framework has been in place for a while, now going through use cases

Applications of numerical solutions for the on-shell integral equations

Formal/numerical extensions to non-zero partial waves

Gaining insight into analytic continuation of amplitudes

More results on the horizon!
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K Matrix Parameterizations

To constrain K matrix, parameterize partial wave components
Saturate sum to include enough freedom for FV irrep

Energy-dependent parameterizations

P
ICS — g K 3‘] R P — polynomials & rational functions
JP

— fit parameters for Quantization Condition

P Po(FE)
Ky =Brr | Py(E)+ =
Ps(E)
Angular momentum barrier factors
det[14+Ks-Fyp]| =0 = M =m] [Kok{" 7.6"
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