Amplitude analyses for rare B decays

Related

Massachusetts Institute of Technology

Eluned Smith 05/29/2024 PWA13/Athos8

LHCb experiment

Rare B decays at LHCb

 $b \rightarrow s\ell\ell$: flavour-changing neutral current,

branching fraction in SM $\mathcal{O}(10^{-6} - 10^{-9})$

Suppression makes rare decays particularly sensitive to New Physics

Rare B decays at LHCb

EWP in effective field theory

EW scale >> m_b , replace loop with effective couplings

 $C_9 = bs\ell\ell$ vector current $C_{10} = bs\ell\ell$ axial-vector current $C_7 = bs\gamma$ (less-relevant)

Rare B decays at LHCb

Highest experimental precision in $b \rightarrow s \mu^+ \mu^-$ decays

Combine branching fraction and angular information for all experiments and measured $b \rightarrow s\mu^+\mu^-$ modes

Disagreement with SM at level of $4-5\sigma$

Long-standing discrepancy- what causes anomalies in rare electroweak penguin decays?

Option 1 - New Physics

= deviations

Option 1 - New Physics

• Many new physics scenarios highly predictive for certain observables, e.g. enhancements in $b \to s \tau^+ \tau^-$

CP violating? Leptoquark? $b \rightarrow s\tau^+\tau^-$?

Option 2 - misunderstood QCD processes

Option 2 - misunderstood QCD processes

• $b \rightarrow sc\bar{c}[c\bar{c} \rightarrow \gamma^* \rightarrow \mu^+\mu^-]$ (charm-loops) difficult to calculate and can mimic deviations in C_9

Measuring $\Gamma(B^0 \to K^{*0} [\to K^+ \pi^-] \mu^+ \mu^-)$

Summary of $b \rightarrow s \mu^+ \mu^-$ angular analysis

$$B_s^0 \to \phi \mu^+ \mu^- \qquad B^+ \to K^{*+} \mu^+ \mu^-$$

 $\Delta \mathcal{R}e(\mathcal{C}_9) = -1.3 \,{}^{+0.7}_{-0.6}$

JHEP 11 (2021) 043

$$B^0 \to K^{*0} \mu^+ \mu^-$$

$$\Delta \mathcal{R}e(\mathcal{C}_9) = -0.99^{+0.25}_{-0.21}$$

Phys. Rev. Lett. 125, 011802

 $\Delta \mathcal{R}e(\mathcal{C}_9) = -1.9$

Phys. Rev. Lett. 126, 161802

Same pattern, negative definitions in effective coupling

Using amplitude analysis to disentangle long and short distance contributions to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$$\frac{\mathrm{d}^4 \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathrm{d}\hat{\Omega} \mathrm{d}q^2} = \sum_i I_i(q^2) f_i(\Omega)$$

	-1	
i	I_i'	
1s	$\left(\frac{(2+\beta_{\mu}^2)}{4}(A_{\perp}^L ^2+ A_{\parallel}^L ^2+ A_{\perp}^R ^2+ A_{\parallel}^R ^2)\right)$	$\sin^2 \theta_K$
	$+\frac{4m_{\mu}^{2}}{q^{2}}\operatorname{Re}\left[A_{\perp}^{L}A_{\perp}^{R*}+A_{\parallel}^{L}A_{\parallel}^{R*}\right]\right)\times \mathcal{BW}_{\mathrm{P}} ^{2}$	
1c	$\left(\left(A_0^L ^2 + A_0^R ^2\right) + \frac{4m_{\mu}^2}{q^2}\left(A_t ^2 + 2 \operatorname{Re}\left[A_0^L A_0^{R*}\right]\right) + \beta_{\mu}^2 A_{\text{scalar}} ^2\right) \times \mathcal{BW}_{\mathrm{P}} ^2$	$\cos^2 \theta_K$
2s	$\frac{\beta_{\mu}^{2}}{4} \left(A_{\perp}^{L} ^{2} + A_{\parallel}^{L} ^{2} + A_{\perp}^{R} ^{2} + A_{\parallel}^{R} ^{2} \right) \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin^2\theta_K\cos 2\theta_\ell$
2c	$-\beta_{\mu}^{2} \left(A_{0}^{L} ^{2} + A_{0}^{R} ^{2} \right) \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\cos^2\theta_K\cos 2\theta_\ell$
3	$\frac{1}{2}\beta_{\mu}^{2} \left(A_{\perp}^{L} ^{2} - A_{\parallel}^{L} ^{2} + A_{\perp}^{R} ^{2} - A_{\parallel}^{R} ^{2} \right) \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$
4	$\frac{1}{\sqrt{2}}\beta_{\mu}^{2} \operatorname{Re}\left[A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R}A_{\parallel}^{R*}\right] \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin 2\theta_K \sin 2\theta_\ell \cos \phi$
5	$\sqrt{2}\beta_{\mu} \left(\operatorname{Re} \left[A_{0}^{L} A_{\perp}^{L*} - A_{0}^{R} A_{\perp}^{R*} \right] - \frac{m_{\mu}}{\sqrt{q^{2}}} \operatorname{Re} \left[A_{\parallel}^{L} A_{\mathrm{scalar}}^{*} + A_{\parallel}^{R} A_{\mathrm{scalar}}^{*} \right] \right) \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin 2\theta_K \sin \theta_\ell \cos \phi$
6s	$2\beta_{\mu} \operatorname{Re}\left[A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}\right] \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin^2\theta_K\cos\theta_\ell$
6c	$4\beta_{\mu} \frac{m_{\mu}}{\sqrt{q^2}} \operatorname{Re} \left[A_0^L A_{\mathrm{scalar}}^* + A_0^R A_{\mathrm{scalar}}^* \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\cos^2\theta_K\cos\theta_\ell$
7	$\sqrt{2}\beta_{\mu} \left(\operatorname{Im} \left[A_{0}^{L} A_{\parallel}^{L*} - A_{0}^{R} A_{\parallel}^{R*} \right] + \frac{m_{\mu}}{\sqrt{q^{2}}} \operatorname{Im} \left[A_{\perp}^{L} A_{\mathrm{scalar}}^{*} + A_{\perp}^{R} A_{\mathrm{scalar}}^{*} \right] \right) \times \mathcal{BW}_{\mathrm{P}} ^{2}$	$\sin 2\theta_K \sin \theta_\ell \sin \phi$
8	$\frac{1}{\sqrt{2}}\beta_{\mu}^2 \operatorname{Im}\left[A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*}\right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin 2\theta_\ell \sin \phi$
9	$\beta_{\mu}^{2} \operatorname{Im} \left[A_{\parallel}^{L} A_{\perp}^{L*} + A_{\parallel}^{R} A_{\perp}^{R*} \right] \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi$
κ		
10	$\frac{1}{2} \Big(A_{\rm S}^L ^2 + A_{\rm S}^R ^2 + \frac{4m_{\mu}^2}{q^2} \big(A_t ^2 + 2 \text{Re} \big[A_{\rm S}^L A_{\rm S}^{R*} \big] \big) \Big) \times \mathcal{BW}_{\rm S} ^2$	1
11	$\sqrt{3} \Big(\operatorname{Re} \Big[\left(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*} + \frac{4m_{\mu}^{2}}{q^{2}} (A_{\mathrm{S}}^{L} A_{0}^{R*} + A_{\mathrm{scalar},t} A_{t}^{*}) \right) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \Big]$	$\cos \theta_K$
	$+ \operatorname{Re}\left[\frac{4m_{\mu}^{2}}{q^{2}}A_{0}^{L}A_{\mathrm{S}}^{R*} \times \mathcal{BW}_{\mathrm{P}}\mathcal{BW}_{\mathrm{S}}^{*}\right]\right)$	
12	$-\frac{1}{2}\beta_{\mu}^{2}\left(A_{\mathrm{S}}^{L} ^{2}+ A_{\mathrm{S}}^{R} ^{2}\right)\times \mathcal{BW}_{\mathrm{S}} ^{2}$	$\cos 2\theta_{\ell}$
13	$-\sqrt{3}\beta_{\mu}^{2} \operatorname{Re}\left[\left(A_{S}^{L}A_{0}^{L*}+A_{S}^{R}A_{0}^{R*}\right)\times\mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\cos\theta_K\cos2\theta_\ell$
14	$\sqrt{\frac{3}{2}}\beta_{\mu}^{2} \operatorname{Re}\left[\left(A_{\mathrm{S}}^{L}A_{\parallel}^{L*} + A_{\mathrm{S}}^{R}A_{\parallel}^{R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin2\theta_\ell\cos\phi$
15	$2\sqrt{\frac{3}{2}}\beta_{\mu} \operatorname{Re}\left[\left(A_{\mathrm{S}}^{L}A_{\perp}^{L*} - A_{\mathrm{S}}^{R}A_{\perp}^{R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\cos\phi$
16	$2\sqrt{\frac{3}{2}}\beta_{\mu} \operatorname{Im}\left[\left(A_{\mathrm{S}}^{L}A_{\parallel}^{L*} - A_{\mathrm{S}}^{R}A_{\parallel}^{R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\sin\phi$
17	$\sqrt{\frac{3}{2}} \beta_{\mu}^2 \operatorname{Im}\left[\left(A_{\mathrm{S}}^L A_{\perp}^{L*} + A_{\mathrm{S}}^R A_{\perp}^{R*}\right) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^*\right]$	$\sin\theta_K\sin 2\theta_\ell\sin\phi$

P-wave ($K^{*0}(892)$)

S-wave (spin-0 $K\pi$ state) +S-P interference

Parameterising amplitudes as a function of q^2

Wilson Local $B \to K^{*0}$ **Coefficients** form-factors, q^2 $\mathcal{A}_{0}^{L,R}(q^{2}) = N_{0} \left\{ \left[\left(\mathcal{C}_{9}^{(\text{eff}),0}(q^{2}) - \mathcal{C}_{9}' \right) \mp \left(\mathcal{C}_{10} - \mathcal{C}_{10}' \right) \right] A_{12}(q^{2}) \right\}$ dependent $+ \frac{m_b}{m_B + m_{K^*}} \left(\mathcal{C}_7^{(\text{eff}),0} - \mathcal{C}_7' \right) T_{23}(q^2) \right\},\$ $\mathcal{A}_{\parallel}^{L,R}(q^2) = N_{\parallel} \left\{ \left[\left(\mathcal{C}_{9}^{(\text{eff}),\parallel}(q^2) - \mathcal{C}_{9}' \right) \mp \left(\mathcal{C}_{10} - \mathcal{C}_{10}' \right) \right] \frac{A_1(q^2)}{m_B - m_{K^*}} \right]$ $+\frac{2m_b}{a^2}\left(\mathcal{C}_7^{(\text{eff}),\parallel}-\mathcal{C}_7'\right)T_2(q^2)$, $\mathcal{A}^{L,R}_{\perp}(q^2) = N_{\perp} \left\{ \left[\left(\mathcal{C}^{(\text{eff}),\perp}_{9}(q^2) + \mathcal{C}'_{9} \right) \mp \left(\mathcal{C}_{10} + \mathcal{C}'_{10} \right) \right] \frac{V(q^2)}{m_B + m_{K'^*}} \right\}$ $+\frac{2m_b}{a^2}\left(\mathcal{C}_7^{(\text{eff}),\perp}-\mathcal{C}_7'\right)T_1(q^2)\bigg\},$ $\mathcal{A}_{t}(q^{2}) = N_{t} \left\{ 2 \left[\mathcal{C}_{10} - \mathcal{C}_{10}' \right] A_{0}(q^{2}) \right\},\$

 $\lambda \in 0, |\,|\,, \bot$

 $\lambda \in 0, ||, \bot$

Two different analyses done, with different models for $H_{\lambda}(q^2)$:

- > Z-expansion (LHCb-PAPER-2023-033,032), partial q^2
- > Amplitude analysis over full q^2 (LHCb-PAPER-2024-011)

 $\lambda \in 0, ||, \bot$

Two different analyses done, with different models for $H_{\lambda}(q^2)$:

- > Z-expansion (LHCb-PAPER-2023-033,032), partial q^2
- > Amplitude analysis over full q^2 (LHCb-PAPER-2024-011)

Z-expansion

Polynomial-expansion

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \times \dots \times \sum_n \alpha_{\lambda n} z^n$$

z = remapping of
$$q^2$$

Polynomial-expansion

 $z = remapping \text{ of } q^2$

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \times \dots \times \sum_n \alpha_{\lambda,n} z^n$$

• With theory info from $< q^2$ (n = 4)

Z-expansion

n

Z-expansion: results

Results for local $B \rightarrow K^*$ form-factors

$$F_i(q^2) = \frac{1}{1 - q^2/m_{R,i}^2} \sum_{k=0}^2 \alpha_{i,k} [z(q^2) - z(0)]^k,$$

 $\alpha_{i,k}$ coefficients constrained from LCSR + LQCD

Z-expansion: results

Central value for C_9 remains consistent with anomalies, but larger uncertainty reduces tension to 1.8σ

 $\lambda \in 0, ||, \bot$

Two different analyses done, with different models for $H_{\lambda}(q^2)$:

- > Z-expansion (LHCb-PAPER-2023-033,032), partial q^2
- > Amplitude analysis over full q^2 (LHCb-PAPER-2024-011)

Amplitude analysis over all q^2 - new!

High Energy Physics – Experiment

[Submitted on 27 May 2024]

Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay

LHCb collaboration: R. Aaij, A.S.W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Ade B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C.A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, P. Albicoco Albrecht, F. Alessio, M. Alexander, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J.L. Amey, Y. Am An, L. Anderlini, M. Andersson, A. Andreianov, P. Andreola, M. Andreotti, D. Andreou, A. Anelli, D. Ao, F. M. Argenton, S. Arguedas Cuendis, A. Artamonov, M. Artuso, E. Aslanides, R. Ataide Da Silva, M. Atzeni, E Audurier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J.J. Back, P. Baladron Rodriguez, V. Ba W. Baldini, H. Bao, J. Baptista de Souza Leite, M. Barbetti, I. R. Barbosa, R.J. Barlow, M. Barnyakov, S. Barsu Barter, M. Bartolini, J. Bartz, J.M. Basels, G. Bassi, B. Batsukh, A. Bay, A. Beck, M. Becker, F. Bedeschi, I.B. B S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. E Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, J. Bhom, M.S. Bieker, N.V. Biesuz, A. Biolchini, M. Birch, F.C.R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J.E. Blank, S. Blusk, V. Bochar J.A. Boelhauve et al. (995 additional authors not shown)

Amplitude analysis over all q^2 - new!

 $H_{\lambda}(q^2) = \sum_{j=all \text{ possible resonances}} A_{\lambda,j} \mathscr{L}(q^2) = |A_{\lambda,j}| e^{i\delta_j,\lambda} \mathscr{L}(q^2)$

 $\mathcal{L} = Breit - Wigner$

 $\mathcal{L} = Dispersion - relation$

Local form factors

Local form-factor results				
Parameter	Prior $[34]$	Posterior		
$lpha_1^{A_0}$	-1.12 ± 0.20	$-1.21 \pm 0.19 \pm 0.02$		
$\alpha_2^{A_0}$	2.18 ± 1.76	$3.23 \pm 1.69 \pm 0.18$		
$lpha_0^{A_1}$	0.29 ± 0.02	$0.29 \pm 0.01 \pm 0.00$		
$\alpha_1^{A_1}$	0.46 ± 0.13	$0.40 \pm 0.10 \pm 0.01$		
$\alpha_2^{A_1}$	1.22 ± 0.73	$1.21 \pm 0.69 \pm 0.10$		
$\alpha_0^{A_{12}}$	0.28 ± 0.02	$0.26 \pm 0.02 \pm 0.00$		
$\alpha_1^{A_{12}}$	0.55 ± 0.34	$0.47 \pm 0.22 \pm 0.04$		
$\alpha_2^{A_{12}}$	0.58 ± 2.08	$0.53 \pm 1.26 \pm 0.17$		
$lpha_0^V$	0.36 ± 0.03	$0.36 \pm 0.02 \pm 0.00$		
$lpha_1^V$	-1.09 ± 0.17	$-1.09 \pm 0.17 \pm 0.01$		
α_2^V	2.73 ± 1.99	$3.93 \pm 1.74 \pm 0.25$		
$lpha_1^{T_1}$	-0.95 ± 0.14	$-0.94 \pm 0.14 \pm 0.01$		
$lpha_2^{T_1}$	2.11 ± 1.28	$2.07 \pm 1.16 \pm 0.05$		
$lpha_0^{T_2}$	0.32 ± 0.02	-		
$lpha_1^{T_2}$	0.60 ± 0.18	$0.61 \pm 0.16 \pm 0.01$		
$lpha_2^{T_2}$	1.70 ± 0.99	$1.78 \pm 0.98 \pm 0.03$		
$lpha_0^{T_{23}}$	0.62 ± 0.03	_		
$lpha_1^{T_{23}}$	0.97 ± 0.32	$0.95 \pm 0.30 \pm 0.01$		
$lpha_2^{T_{23}}$	1.81 ± 2.45	$1.68 \pm 2.15 \pm 0.04$		

Nonlocal parameter results						
$ A_{J/\psi}^{\parallel} $	$(3.98 \pm 0.01 \pm 0.15) \times 10^{-3}$	$\delta^{\parallel}_{J/\psi}$	$0.23 \pm 0.01 \pm 0.01$			
$ A_{J/\psi}^{\perp} $	$(3.85 \pm 0.01 \pm 0.14) \times 10^{-3}$	$\delta^{\perp}_{J/\psi}$	$-0.21 \pm 0.00 \pm 0.01$			
$ A_{J/\psi}^{0'} $	_	$\delta^{0'}_{J/\psi}$	$-1.92 \pm 0.05 \pm 0.02$			
$ A_{\psi(2S)}^{\parallel} $	$(9.59\pm 0.28\pm 0.82)\times 10^{-4}$	$\delta^{\parallel}_{\psi(2S)}$	$0.84 \pm 0.02 \pm 0.19$			
$ A_{\psi(2S)}^{\perp} $	$(8.38 \pm 0.27 \pm 0.62) \times 10^{-4}$	$\delta^{\perp}_{\psi(2S)}$	$-0.44 \pm 0.02 \pm 0.11$			
$ A_{\psi(2S)}^{0} $	$(13.4 \pm 0.4 \pm 1.1) \times 10^{-4}$	$\delta^{0}_{\psi(2S)}$	$-2.54 \pm 0.13 \pm 0.12$			
$ A_{\rho(770)}^{0} $	_	$\delta^{0}_{\rho(770)}$	$1.38 \pm 0.53 \pm 0.65$			
$ A^{0}_{\omega(782)} $	_	$\delta^{0}_{\omega(782)}$	$-0.49 \pm 0.92 \pm 0.53$			
$ A^{0}_{\phi(1020)} $	-	$\delta^{0}_{\phi(1020)}$	$0.10 \pm 0.82 \pm 0.78$			

				Nonlocal parameter results			
Nonlocal parameter results $(\times 10^{-5})$			$\Re(A_{D^0\bar{D}^0}^{\parallel})$	$-0.07 \pm 0.93 \pm 0.69$	$\Im(A_{D^0\bar{D}^0}^{\parallel})$	$-0.44 \pm 0.71 \pm 0.73$	
$\Re(A_{u(3770)}^{\parallel})$	$3.68 \pm 1.34 \pm 0.73$	$\Im(A_{\psi(3770)}^{\parallel})$	$2.87 \pm 1.88 \pm 0.49$	$\Re(A_{D^0\bar{D}^0}^{\perp})$	$-0.12 \pm 0.83 \pm 0.71$	$\Im(A_{D^0\bar{D}^0}^{\perp})$	$0.02 \pm 0.80 \pm 0.74$
$\Re(A_{\psi(3770)}^{\perp})$	$-3.53 \pm 1.45 \pm 0.47$	$\Im(A^{\perp}_{\psi(3770)})$	$-0.86 \pm 1.56 \pm 0.53$	$\Re(A^0_{D^0\bar{D}^0})$	$-0.33 \pm 0.91 \pm 0.70$	$\Im(A^0_{D^0\bar{D}^0})$	$-0.27 \pm 0.77 \pm 0.81$
$\Re(A^0_{\psi(3770)})$	$-3.14 \pm 1.39 \pm 0.60$	$\Im(A^0_{\psi(3770)})$	$1.67 \pm 1.54 \pm 0.62$	$\Re(A_{D^{*0}\bar{D}^{*0}}^{\ })$	$-0.06 \pm 0.96 \pm 0.63$	$\Im(A_{D^{*0}\bar{D}^{*0}}^{\parallel})$	$-0.25 \pm 0.79 \pm 0.67$
$\Re(A^{\parallel})$	$-2.39 \pm 1.53 \pm 0.96$	$\Im(A^{\parallel})$	$-0.71 \pm 1.80 \pm 1.11$	$\Re(A_{D^{*0}\bar{D}^{*0}})$	$-0.16 \pm 0.91 \pm 0.66$	$\Im(A_{D^{*0}\bar{D}^{*0}})$	$-0.03 \pm 0.85 \pm 0.70$
$\Re(A^{\perp}_{\psi(4040)})$	$-2.01 \pm 1.47 \pm 0.59$	$\Im(A^{\perp}_{\psi(4040)})$	$0.35 \pm 1.49 \pm 0.82$	$\Re(A^0_{D^{*0}\bar{D}^{*0}})$	$-0.17 \pm 0.95 \pm 0.66$	$\Im(A^0_{D^{*0}\bar{D}^{*0}})$	$-0.28 \pm 0.85 \pm 0.78$
$\Re(A^0_{\psi(4040)})$	$-5.62 \pm 1.71 \pm 1.07$	$\Im(A^{0}_{\psi(4040)})$	$1.32 \pm 1.87 \pm 0.99$	$\Re(A_{D^{*0}\bar{D}^0}^{\scriptscriptstyle \parallel})$	$0.02 \pm 0.42 \pm 0.66$	$\Im(A^{\scriptscriptstyle \parallel}_{D^{*0}\bar{D}^0})$	$-0.46 \pm 0.32 \pm 0.58$
$\Re(\Lambda^{\parallel})$	$0.04 \pm 1.72 \pm 0.56$	$\Im(\Lambda^{\parallel})$	$1.01 \pm 1.08 \pm 1.45$	$\Re(A_{D^{*0}\bar{D}^0}^{\perp})$	$-0.24 \pm 0.42 \pm 0.70$	$\Im(A_{D^{*0}\bar{D}^0}^{\perp})$	$-0.11 \pm 0.39 \pm 0.61$
$\mathfrak{P}(A_{\psi(4160)})$	$0.04 \pm 1.72 \pm 0.50$ $0.81 \pm 1.75 \pm 0.61$	$\Im(A_{\psi(4160)})$ $\Im(A^{\perp})$	$1.91 \pm 1.90 \pm 1.40$ 0.22 ± 0.15 ± 0.00	$\Re(A_{D^{*0}\bar{D}^0}^{\circ})$	$-0.51 \pm 0.41 \pm 0.68$	$\Im(A^{\circ}_{D^{*0}\overline{D}^0})$	$0.12 \pm 0.35 \pm 0.58$
$\mathfrak{n}(A_{\psi(4160)})$	$-2.01 \pm 1.75 \pm 0.01$	$\Im(A_{\psi(4160)})$	$0.32 \pm 0.13 \pm 0.09$ 1 66 + 1 67 + 1 04	$\Re(\Delta C_7^{\scriptscriptstyle \parallel})$	$0.00 \pm 0.03 \pm 0.02$	$\Im(\Delta \mathcal{C}_7^{\scriptscriptstyle \parallel})$	$-0.10 \pm 0.03 \pm 0.01$
$\pi(A_{\psi(4160)})$	$1.03 \pm 1.77 \pm 0.39$	$\Im(A_{\psi(4160)})$	$-1.00 \pm 1.07 \pm 1.04$	$\Re(\Delta C_7^{\perp})$	$-0.05 \pm 0.03 \pm 0.02$	$\Im(\Delta C_7^{\perp})$	$-0.04 \pm 0.04 \pm 0.01$
				$\Re(\Delta C_7^0)$	$0.33 \pm 0.33 \pm 0.09$	$\Im(\Delta C_7^0)$	$-0.19 \pm 0.20 \pm 0.09$

Nonlocal parameter results								
$ A_{J/\psi}^{\parallel} $	$(3.98 \pm 0.01 \pm 0.15) \times 10^{-3}$	$\delta^{\parallel}_{J/\psi}$	$0.23 \pm 0.01 \pm 0.01$					
$ A_{J/\psi}^{\perp} $	$(3.85 \pm 0.01 \pm 0.14) \times 10^{-3}$	$\delta^{\perp}_{J/\psi}$	$-0.21 \pm 0.00 \pm 0.01$					
$ A_{J/\psi}^0 $	—	$\delta^0_{J/\psi}$	$-1.92 \pm 0.05 \pm 0.02$					
$ A_{\psi(2S)}^{\parallel} $	$(9.59 \pm 0.28 \pm 0.82) \times 10^{-4}$	$\delta^{\parallel}_{\psi(2S)}$	$0.84 \pm 0.02 \pm 0.19$					
$ A_{\psi(2S)}^{\perp} $	$(8.38\pm0.27\pm0.62)\times10^{-4}$	$\delta^{\perp}_{\psi(2S)}$	$-0.44 \pm 0.02 \pm 0.11$					
$ A_{\psi(2S)}^{0} $	$(13.4 \pm 0.4 \pm 1.1) \times 10^{-4}$	$\delta^{0}_{\psi(2S)}$	$-2.54 \pm 0.13 \pm 0.12$					
$ A^{0}_{\rho(770)} $	—	$\delta^{0}_{ ho(770)}$	$1.38 \pm 0.53 \pm 0.65$					
$ A^{0}_{\omega(782)} $	-	$\delta^0_{\omega(782)}$	$-0.49 \pm 0.92 \pm 0.53$					
$ A^0_{\phi(1020)} $	—	$\delta^{0}_{\phi(1020)}$	$0.10 \pm 0.82 \pm 0.78$					

	Nonlocal parameter results						
Nonlocal parameter results $(\times 10^{-5})$			$\Re(A_{D^0\bar{D}^0}^{\parallel})$	$-0.07 \pm 0.93 \pm 0.69$	$\Im(A_{D^0\bar{D}^0}^{\parallel})$	$-0.44 \pm 0.71 \pm 0.73$	
$\Re(A_{u'(3770)}^{\parallel})$	$3.68 \pm 1.34 \pm 0.73$	$\Im(A_{\psi(3770)}^{\parallel})$	$2.87 \pm 1.88 \pm 0.49$	$\Re(A_{D^0\bar{D}^0}^{\perp})$	$-0.12 \pm 0.83 \pm 0.71$	$\Im(A_{D^0\bar{D}^0}^{\perp})$	$0.02 \pm 0.80 \pm 0.74$
$\Re(A^{\perp}_{\psi(3770)})$	$-3.53 \pm 1.45 \pm 0.47$	$\Im(A^{\perp}_{\psi(2770)})$	$-0.86 \pm 1.56 \pm 0.53$	$\Re(A^0_{D^0\bar{D}^0})$	$-0.33 \pm 0.91 \pm 0.70$	$\Im(A^0_{D^0\bar{D}^0})$	$-0.27 \pm 0.77 \pm 0.81$
$\Re(A^0_{\psi(3770)})$	$-3.14 \pm 1.39 \pm 0.60$	$\Im(A^0_{\psi(2770)})$	$1.67 \pm 1.54 \pm 0.62$	$\Re(A_{D^{*0}\bar{D}^{*0}}^{\parallel})$	$-0.06 \pm 0.96 \pm 0.63$	$\Im(A^{\parallel}_{D^{*0}\bar{D}^{*0}})$	$-0.25 \pm 0.79 \pm 0.67$
$\Re(A^{\parallel})$	$-2.39 \pm 1.53 \pm 0.96$	$\Im(A^{\parallel})$	-0.71 + 1.80 + 1.11	$\Re(A_{\bar{D}^{*0}\bar{D}^{*0}}^{\perp})$	$-0.16 \pm 0.91 \pm 0.66$	$\Im(A_{\bar{D}^{*0}\bar{D}^{*0}}^{\perp})$	$-0.03 \pm 0.85 \pm 0.70$
$\Re(\Lambda^{\perp}_{\psi(4040)})$	$-2.03 \pm 1.03 \pm 0.50$ $-2.01 \pm 1.47 \pm 0.50$	$\Im(\Lambda_{\psi(4040)})$ $\Im(\Lambda^{\perp})$	$0.11 \pm 1.00 \pm 1.11$ $0.35 \pm 1.40 \pm 0.82$	$\Re(A^0_{\bar{D}^{*0}\bar{D}^{*0}})$	$-0.17 \pm 0.95 \pm 0.66$	$\Im(A^0_{\bar{D}^{*0}\bar{D}^{*0}})$	$-0.28 \pm 0.85 \pm 0.78$
$\mathfrak{P}(A_{\psi(4040)})$	$-2.01 \pm 1.41 \pm 0.03$ 5.69 ± 1.71 ± 1.07	$\Im(\Lambda_{\psi(4040)})$ $\Im(\Lambda^0)$	$0.30 \pm 1.43 \pm 0.02$ 1 20 \pm 1 87 \pm 0.00	$\Re(A_{D^{*0}\bar{D}^0}^{\parallel})$	$0.02 \pm 0.42 \pm 0.66$	$\Im(A^{\parallel}_{D^{*0}\bar{D}^0})$	$-0.46 \pm 0.32 \pm 0.58$
$\mathfrak{n}(A_{\psi(4040)})$	$-5.02 \pm 1.71 \pm 1.07$	$3(A_{\psi(4040)})$	$1.32 \pm 1.67 \pm 0.99$	$\Re(A_{D^{*0}\bar{D}^0}^{\perp})$	$-0.24 \pm 0.42 \pm 0.70$	$\Im(A_{D^{*0}\bar{D}^0}^{\perp})$	$-0.11 \pm 0.39 \pm 0.61$
$\Re(A^{"}_{\psi(4160)})$	$0.04 \pm 1.72 \pm 0.56$	$\Im(A^{\scriptscriptstyle \parallel}_{\psi(4160)})$	$1.91 \pm 1.98 \pm 1.45$	$\Re(A^0_{D^{*0}\bar{D}^0})$	$-0.51 \pm 0.41 \pm 0.68$	$\Im(A^0_{D^{*0}\bar{D}^0})$	$0.12 \pm 0.35 \pm 0.58$
$\Re(A_{\psi(4160)}^{\perp})$	$-2.81 \pm 1.75 \pm 0.61$	$\Im(A^{\perp}_{\psi(4160)})$	$0.32 \pm 0.15 \pm 0.09$	$\Re(\Delta \mathcal{C}_7^{\parallel})$	$0.00 \pm 0.03 \pm 0.02$	$\Im(\Delta \mathcal{C}_7^{\parallel})$	$-0.10 \pm 0.03 \pm 0.01$
$\Re(A^0_{\psi(4160)})$	$1.03 \pm 1.77 \pm 0.39$	$\Im(A^0_{\psi(4160)})$	$-1.66 \pm 1.67 \pm 1.04$	$\Re(\Delta \mathcal{C}_7^{\perp})$	$-0.05 \pm 0.03 \pm 0.02$	$\Im(\Delta \mathcal{C}_7^{\perp})$	$-0.04 \pm 0.04 \pm 0.01$
				$\Re(\Delta C_7^0)$	$0.33 \pm 0.33 \pm 0.09$	$\Im(\Delta C_7^0)$	$-0.19 \pm 0.20 \pm 0.09$

A lot of numbers describing non-local effects...easier to see graphically

Non-local form factors (amplitude analysis + z-expansion)

 $\Delta \mathcal{C}_9^{\rm NP} = -0.71 \pm 0.33$

Central value for C_9 remains consistent with anomalies, but larger uncertainty reduces tension to 2.1 σ

Best direct measurement of $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) = 1e^3 90\%$ CL

Some thoughts on challenges

- Scale difference between short and long distance amplitudes
- Incorporating resolution into fit: q^2 dependent + care about the tails
- Computational time for unbinned ML + res. convolution on ~ 1.5 million events
- Incorporating exotica
- Presenting fit info to theorists pseudo data?
- Knowledge of open charm-states/fit stability (mainly affects

Summary

- First amplitude analysis of $B^0 \to K^{*0} \mu^+ \mu^-$
- Challenging but necessary to leverage data to separate short and long-distance
- Two analyses performed so far, using different models/data
- Future analyses will include CP-violating affects (strong phase variation)
- Measurements of $B^0
 ightarrow K^{*0} J/\psi$ from Belle II wanted :)

$b \rightarrow s\gamma$ amplitude analyses

•
$$B_s \to \phi \gamma, B^0 \to K^{*0} \gamma, B^+ \to K^+ \pi^- \gamma, \Lambda_b \to p K \gamma \dots$$

$b \rightarrow s\gamma$ amplitude analyses

•
$$B_s \to \phi \gamma, B^0 \to K^{*0} \gamma, B^+ \to K^+ \pi^- \gamma, \Lambda_b \to p K \gamma \dots$$

Amplitude analysis of $\Lambda_b^0 \rightarrow pK\gamma$ - new !

• Largest contributions to m(pK) spectrum from $\Lambda(1520), \Lambda(1600), \Lambda(1800)$ and $\Lambda(1890)$ states

Amplitude analysis of $\Lambda_b^0 \rightarrow pK\gamma$ - new !

LHCb-PAPER-2023-036

• Comparison to $\Lambda_b \to pKJ/\psi$ tricky as no pentaquark, heavier resonances enhanced in radiative case