29th of May 2024

The light meson regime from coupledchannel analyses

Meike Küßner

Institut für Experimental Physik I – Ruhr-Universität Bochum

On behalf of the BESIII collaboration

Light Meson Regime

- Light mesons are tricky to tackle for both theory and experiment
- Highly populated spectrum: many overlapping, interfering, mixing or distorted states
- Some of the light mesons most likely have a more complex inner structure
- Easy identification through exotic q.n. but this rarely the case

Light Meson Regime

- Light mesons are tricky to tackle for both theory and experiment
- Highly populated spectrum: many overlapping, interfering, mixing or distorted states
- Some of the light mesons most likely have a more complex inner structure
- Easy identification through exotic q.n. but this rarely the case

2

Experimental Possibilities

- Each experiment, detector and process has its own advantages

Gluon rich processes

- Radiative charmonium decays
- pp annihilation
- pp central production
- • •

QED mediated process

Two-photon production

e⁺

Why Coupled Channel Approach?

Advantages compared to single channel fits:

- More constraints due to common amplitudes and shared parameters
- Conservation of unitarity by using sophisticated models as e.g. K-matrix, N/D, …
- Better description of threshold effects
- Multiple resonances directly measurable in one analysis
- Proper determination of pole parameters and coupling strengths

4

One Prominent Example: The Lightest Hybrid Candidate

Two π_1 hybrid candidates below 2 GeV are listed in PDG

- one at around 1.4 GeV only seen in $\pi\eta$
- the other at around 1.6 GeV seen in $\pi\eta$ but not in $\pi\eta$
- Parameters obtained by Breit-Wigner fits!
 - Theory: Only one π_1 state predicted slightly below 2 GeV

RUHR-UNIVERSITÄT BOCHUM

Meike Küßner

Coupled Channel Analysis of $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$

- Combining data from different experiments:
- $\bar{p}p \to \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$ data in flight form Crystal Barrel at LEAR
- COMPASS data of P- and D-waves in the $\pi\eta$ and $\pi\eta'$ systems
- 11 different $\pi\pi$ scattering data samples
- Simultaneously described using the K-Matrix formalism in the P-vector approach
- The whole process from the initial to the final state is described in all phase space dimensions

6

RUHR-UNIVERSITÄT BOCHUM

Why scattering data?

- Scattering processes only characterized by inelasticities and phase motions
 - ➡,,Easy" access to resonance parameters
- Quite pure and simple reaction
- Known well from experiments from 80s and theory!!
 Phys. Rep. 969 (2022) 1–126, Phys. Rev. D 83, 074004 (2011)
- Good constraints for f_0 , f_2 and ρ resonances
- All dispersive relations are fulfilled automatically!

But: All this relies on data from $KN \rightarrow K\pi N'$ reactions from 70s and 80s! Would be nice to have some new data on this

7

Coupled Channel Analysis of $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$

• Exotic π_1 wave significantly contributing in the $\pi^0\eta$ system!

Eur. Phys. J. C (2021) 81, 1056

- Description with one pole possible!
- Confirmation of the JPAC analysis based on N/D-method Phys. Rev. Lett. 122 (2019) 4, 042002

RUHR-UNIVERSITÄT BOCHUM

8

Coupled Channel Analysis of $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$

RUHR-UNIVERSITÄT BOCHUM

Simultaneous Description of Scattering Data

RUHR-UNIVERSITÄT BOCHUM

PWA13/ATHOS8

10

Extraction of Resonance Properties

- K-matrix and thus the pole itself contain all resonance properties
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet

$$Res^{\alpha}_{k \to k} = \frac{1}{2\pi i} \oint_{C_{z_{\alpha}}} \sqrt{\rho_k} \cdot T_{k \to k}(z) \cdot \sqrt{\rho_k} \, \mathrm{d}z$$

PWA13/ATHOS8

RUHR-UNIVERSITÄT BOCHUM

Coupled Channel Analysis of pp and COMPASS Data

$K^*(892)^{\pm}$ $\bar{p}p$ $893.8 \pm 1.0 \pm 0.8$ $56.3 \pm 2.0 \pm 1.0$ $\phi(1020)$ $\bar{p}p$ $1018.4 \pm 0.5 \pm 0.2$ 4.2 (fixed) name relevant data pole mass [MeV/c^2] pole width Γ [MeV]	
$\phi(1020) \qquad \bar{p}p \qquad 1018.4 \pm 0.5 \pm 0.2 \qquad 4.2 \text{ (fixed)}$ name relevant data pole mass pole width $[MeV/c^2] \qquad \Gamma [MeV]$	
name relevant data pole mass pole width $[MeV/c^2]$ Γ [MeV]	
$f_0(980)^{++}$ scat $977.8 \pm 0.6 \pm 1.4$ $98.8 \pm 6.6 \pm 11.2$	
$f_0(980)^{+++}$ scat $992.6 \pm 0.3 \pm 0.5$ $61.2 \pm 1.2 \pm 1.7$	
$f_0(1370)$ scat $1281 \pm 11 \pm 26$ $410 \pm 12 \pm 50$	uaral re
$f_0(1500)$ $\bar{p}p + \text{scat}$ $1511.0 \pm 8.5 \substack{+3.5 \\ -14.0}$ $81.1 \pm 4.5 \substack{+26.9 \\ -0.5}$	veralite
$f_0(1710)$ $\bar{p}p + \text{scat}$ 1794.3 ± 6.1 $^{+47.0}_{-61.2}$ 281 ± 32 $^{+12}_{-80}$	simu
$f_2(1810)$ scat $1769 \pm 26 \frac{+3}{-26}$ $201 \pm 57 \frac{+13}{-87}$	
$f_2(X)$ scat $2119.9 \pm 6.4 \stackrel{+25.7}{_{-1.1}}$ $343 \pm 11 \stackrel{+32}{_{-11}}$	
name relevant data pole mass pole width $\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [MeV/c ²] Γ [MeV] [%]	s para
$\pi_1 \qquad \bar{p}p + \pi p \qquad 1623 \pm 47 {}^{+24}_{-75} \qquad 455 \pm 88 {}^{+144}_{-175} \qquad 554 \pm 110 {}^{+180}_{-27}$	Can be
namerelevant datapole masspole width $\Gamma_{KK}/\Gamma_{\pi\eta}$ $[MeV/c^2]$ Γ [MeV][%]	
$a_0(980)^{}$ $\bar{p}p$ 1002.7 ± 8.8± 4.2 132 ± 11± 8 14.8 ± 7.1± 3.6	
$a_0(980)^{-+}$ $\bar{p}p$ 1003.3 ± 8.0± 3.7 101.1 ± 7.2± 3.0 13.5 ± 6.2± 3.1	
$a_0(1450)$ $\bar{p}p$ 1303.0 ± 3.8± 1.9 109.0 ± 5.0± 2.9 396 ± 72± 72	
namerelevant datapole mass $[MeV/c^2]$ pole width $\Gamma_{KK}/\Gamma_{\pi\eta}$ $\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [MeV/c^2] Γ [MeV][%][%]	
$a_2(1320)$ $\bar{p}p + \pi p$ 1318.7 ± 1.9 $^{+1.3}_{-1.3}$ 107.5 ± 4.6 $^{+3.3}_{-1.8}$ 31 ± 22 $^{+9}_{-11}$ 4.6 ± 1.5 $^{+7.0}_{-0.6}$	
$a_2(1700)$ $\bar{p}p + \pi p$ 1686 $\pm 22^{+19}_{-7}$ 412 $\pm 75^{+64}_{-57}$ 2.9 $\pm 4.0^{+1.1}_{-1.2}$ 3.5 $\pm 4.4^{+6.9}_{-1.2}$	
namerelevant datapole masspole width $\Gamma_{\pi\pi}/\Gamma$ Γ_{KK}/Γ $[MeV/c^2]$ Γ [MeV][%][%]	Γ _{ηη} /Γ [%]
$f_2(1270)$ $\bar{p}p + \text{scat}$ 1262.4 $\pm 0.2 \substack{+0.2\\-0.3}$ 168.0 $\pm 0.7 \substack{+1.7\\-0.1}$ 87.7 $\pm 0.3 \substack{+4.8\\-4.4}$ 2.6 $\pm 0.1 \substack{+0.1\\-0.2}$	$0.3 \pm 0.1 \substack{+0.0\\-0.1}$
$f'_2(1525)$ $\bar{p}p + \text{scat}$ $1514.7 \pm 5.2 \stackrel{+0.3}{_{-7.4}}$ $82.3 \pm 5.2 \stackrel{+11.6}{_{-4.5}}$ $2.1 \pm 0.3 \stackrel{+0.8}{_{-0.0}}$ $67.2 \pm 4.2 \stackrel{+5.0}{_{-3.8}}$	$9.8 \pm 3.8 \substack{+1.7\\-3.3}$
$\rho(1700)$ $\bar{p}p$ + scat $1700 \pm 27 {}^{+13}_{-16}$ $181 \pm 25 {}^{+0.0}_{-16}$ $13.6 \pm 1.2 {}^{+0.9}_{-0.5}$ $0.8 \pm 0.1 {}^{+0.0}_{-0.0}$	-

parameterisation is universal an be used in other analyses!

RUHR-UNIVERSITÄT BOCHUM

 $\Gamma_{\eta\eta}/\Gamma$ [%]

Two-Photon Reactions

Idea: Learning More About the Inner Structure

- Clean e.m. process, only sensitive to charge
- Complementary information on glueball candidates!
- States with even C-parity 0^{±+}, (1^{±+}), 2^{±+}, ... can be directly produced

Untagged reactions:

- Scattering angles of electron and positron are small and are not detectable
- Quasi real photons carrying small virtuality = spin 1 strongly suppressed

Coupled Channel Analysis of Two-Photon Data

- Using obtained parameterization and fix all pole and decay parameters
- All structures can be well described
- Dominant contribution of $(J, \lambda) = (2,2), (0,0)$
- Best fit result using all 14 resonances and P-vector background terms: 1. order for f_2, a_2, a_0 -waves

Radiative J/ψ decays

- Gluon-rich process

 production of glueballs and hybrids expected
- Glueballs Candidates:
 - Lightest glueball 0^{++} is predicted below $2 \,\text{GeV}/c^2$
 - Observed states $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ likely to be mixtures of pure glueball and quark component
 - BESIII has accumulated very high statistics at J/ψ
 - 50 times more than 10 years ago!
 - Great opportunities to search for the 0⁺⁺- and 2⁺⁺ glueball candidates!

Phys. Rev. D 73, 014516 (2006)

PWA13/ATHOS8

RUHR-UNIVERSITÄT BOCHUM

15

 $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Structure observed near $\bar{p}p$ threshold: X(1835) and two additional states X(2120) and X(2370)!
- X(2370) more in the media recently, already seen in:
 - $J/\psi
 ightarrow \gamma \eta' K ar{K}$ besiii, epj C80 746 (2020)
 - $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ BESIII, PRL 106 072002 (2011)
- Seem to indicate non-negligible $s\bar{s}$ component
- Second radial excitation of η' ?

16

 $J/\psi \to \gamma \eta' \pi^+ \pi^-$

Meike Küßner

PWA13/ATHOS8

RUHR-UNIVERSITÄT BOCHUM

 $J/\psi \to \gamma \eta' \pi^+ \pi^-$

PRL 129, 042001 (2022)

RUHR-UNIVERSITÄT BOCHUM

Meike Küßner

18

 $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

PRL 129, 042001 (2022)

- Likely connected to a non trivial structure at $1500 \,\mathrm{MeV}/c^2$ in $\pi^+\pi^-$ system
- Simultaneous fit to $\pi^+\pi^-$ system and $\eta'\pi^+\pi^-$ systems performed
- $\pi^+\pi^-$ system described by $f_0(1500)$ and additional state X(1540)

Resonance	Mass (MeV/ c^2)	Width (MeV)
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107 \pm 9^{+21}_{-7}$
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195\pm5^{+26}_{-17}$

 Further studies ongoing, full PWA needed…

19

 $J/\psi \to \gamma \eta' K_S^0 K_S^0$

- Amplitude analysis using covariant tensor formalism including mostly Breit-Wigner line shapes + Flatté for $f_0(980)$
- Spin-parity of X(2370) determined to be $0^{-+}!$
- Could be a glueball candidate PRD 100 054511
 (2019) but predictions vary strongly...
- Further analyses of other channels will help to learn about sub processes and interplay with $K\bar{K}$ and $\pi^+\pi^-$ system

state	JPC	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	> 20.0 \sigma
PHSP	$\eta'(K_S^0K_S^0)_{S-wave}$			9.0σ	
	$\left \right\rangle$	$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ

RUHR-UNIVERSITÄT BOCHUM

PRL 132 181901 (2024)

Meike Küßner

• Would be interesting to search for X states in two-photon data...

$J/\psi \to \gamma \eta' \eta$

- PWA of $J/\psi \rightarrow \gamma \eta \eta'$ using 10 Billion J/ψ events
- Veto ϕ in $\gamma\eta$ system
- 15000 signal events and \sim 8-13% background events remaining
- All kinematically allowed resonances as listed in the PDG considered
 - $J^{PC} = 0^{++}$, 2^{++} and 4^{++} ($\eta'\eta$ system)

•
$$J^{PC} = 1^{+-}$$
 and $1^{--} (\gamma \eta^{(\prime)} \text{ system})$

PRL 129, 19, 192002 (2022) PRD 106, 7, 072012 (2022)

$$\eta'
ightarrow \gamma \pi^+ \pi^-$$

-		-	_	_			
Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}$ (MeV)	B.F. (×10 ⁻⁵)	Sig.
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(1500)$	1506	112	1506	112	3.05 ± 0.07	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	0.07 ± 0.01	7.6σ
	$f_0(2020)$	1935 ± 5	266 ± 9	1992	442	1.67 ± 0.07	11.0σ
	$f_0(2100)$	2109 ± 11	253 ± 21	2086	284	0.33 ± 0.03	5.2σ
	$f_0(2330)$	2327 ± 4	44 ± 5	2314	144	0.07 ± 0.01	8.5σ
	$f_2(1565)$	1542	122	1542	122	0.20 ± 0.03	6.2σ
	$f_2(1810)$	1815	197	1815	197	0.37 ± 0.03	7.0σ
	$f_2(2010)$	2022 ± 6	212 ± 8	2011	202	1.36 ± 0.10	8.8σ
	$f_2(2340)$	2345	322	2345	322	0.25 ± 0.04	6.5σ
	$f_4(2050)$	2018	234	2018	234	0.11 ± 0.02	5.6σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	0.14 ± 0.01	10.3σ
	$h_1(1595)$	1584	384	1584	384	0.41 ± 0.04	9.7 <i>σ</i>
	$\phi(2170)$	2160	125	2160	125	0.24 ± 0.03	5.6σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	0.50 ± 0.03	11.0σ
	$\rho(1700)$	1720	250	1720	250	0.22 ± 0.03	8.8 <i>o</i>

 $\eta'
ightarrow \eta \pi^+ \pi^-$

RUHR-UNIVERSITÄT BOCHUM

Meike Küßner

 $J/\psi \rightarrow \gamma \eta' \eta$

PRL 129, 19, 192002 (2022) PRD 106, 7, 072012 (2022)

- Additionally need of a spin exotic contribution found
 ⇒ η₁(1855)
- $M = (1855 \pm 9^{+6}_{-1}) \,\mathrm{MeV}/c^2$, $\Gamma = (199 \pm 18^{+3}_{-8}) \,\mathrm{MeV}$
- May be the isoscalar partner of the $\pi_1(1600)$
- Further studies needed!
- Additional decay channels need to be investigated to improve the PWA model

 $J/\psi \rightarrow \gamma \eta' \eta$

- Additionally need of a spin exotic contribution found
 ⇒ η₁(1855)
- $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV}/c^2$, $\Gamma = (199 \pm 18^{+3}_{-8}) \text{ MeV}$
- May be the isoscalar partner of the $\pi_1(1600)$
- Further studies needed!
- Additional decay channels need to be investigated to improve the PWA model

23

RUHR-UNIVERSITÄT BOCHUM

Summary and Perspectives

- Although light mesons are studied for decades, there are still many open questions
- Coupled channel analyses seem to be a good tool to disentangle crowded spectra
- BESIII has accumulated world leading statistics in the charmonium region
- Especially J/ψ decays provide an excellent laboratory to study light hadron decays
- Recently many indications for new states
 - $\eta_1(1855)$ in $J/\psi \to \gamma \eta' \eta$
 - X(2600) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Spin-parity determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$
 - Coupled channel PWA of two-photon data is the first of its kind and adds hopefully infos to the inner structure of the light 0⁺⁺ candidates
- Especially more sophisticated PWA analyses and additional decay channels needed
- Work closer together in the community common effort is needed to answer fundamental questions!

Thank You!

25

PWA13/ATHOS8

RUHR-UNIVERSITÄT BOCHUM