PWA Model building with Parametric and Nonparametric Components

 $\leftarrow Lawrence Ng$ Florian Kaspar \rightarrow PWA Athos 2024

Mass Independent Fits

• Minimize model dependence

Cons:

- Prone to instabilities from:
 - Ambiguitie
 - Numerical (lower stats)

Largely unexplored

Mass Dependent Fits Pros:

- Smooth results by construction
- Assume some physics (i.e. extract resonance parameters)
- Biased results / heuristics

Maybe we can draw knowledge from other fields?

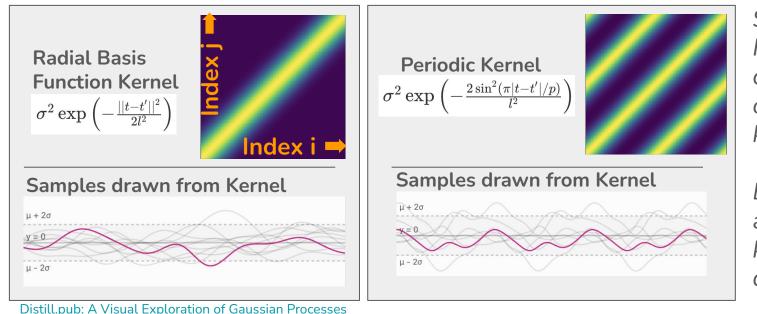
But first, we need some core concepts

Base Knowledge 1/2: Gaussian Processes

- Generalization of Multivariate Gaussian to infinite dimensions
- At the core: Kernel Function

$$\sim \kappa(x_i, x_j) = Cov(X, X') = \Sigma$$

Similarity measure / covariance between two points

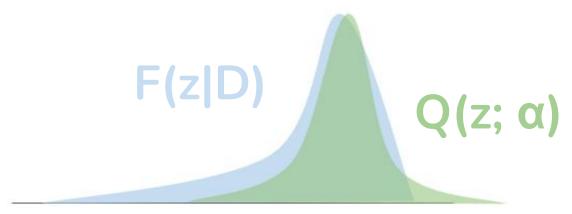


Specific Kernels are chosen based on domain knowledge

But! We <u>can</u> also learn the kernel from data!

Base Knowledge 2/2: Variational Inference

F(z|D) = Complicated Posterior FunctionQ(z; α) = Simple functionVary α such that Q(z; α) ≈ F around some point



Numerical Information Field Theory

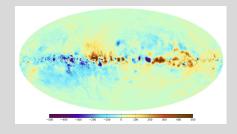
Inference Framework developed for astrophysics at Max Planck Institute for Astrophysics

G. Edenhofer, P. Frank, J. Roth, R. H. Leike, M. Guerdi, L. I. Scheel-Platz, M. Guardiani, V. Eberle, M. Westerkamp, and T. A. Enßlin. Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference, 2024.

Mainly working with: Philipp Frank, Torsten Enßlin, Jakob Knollmüller

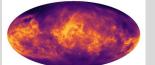
Description

NIFTy, "Numerical Information Field Theory", is a <u>Bayesian</u> imaging library. It is designed to infer the <u>million</u> to billion dimensional posterior distribution <u>in the image space</u> from noisy input data. At the core of NIFTy lies a set of powerful <u>Gaussian Process</u> (GP) models and accurate <u>Variational Inference</u> (VI) algorithms.



An improved map of the Galactic Faraday sky

N. Oppermann^{*1}, H. Junklewitz¹, G. Robber3¹, M.R. Bell¹, T.A. Eußlin¹, A. Bonafede², R. Braun³, J.C. Brown⁴, T.E. Clarke⁵, I.J. Feain³, B.M. Gaensler⁶, A. Hammond⁶, L. Harvey-Smith¹, G. Holad¹, M. Ohnson-Hollita⁴, U. Klein⁵, P.F. Korberg^{10,1}, S. A. Mas^{1,1}, N.M. McClure-Griffith², S.F. O'Sullivan³, L. Pratley⁴, T. Robishaw¹³, S. Roy¹⁴, D.H.F.M. Schnitzeler^{3,15}, C. Stomayor-Beltran⁶, J. Stevens¹, J.M. Stil⁴, C. Sunstrum⁴, A. Tanna¹⁷, A.R. Taylo⁶, and C.L. Van Eck⁴

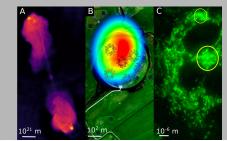


Resolving nearby dust clouds* R. H. Leike^{1,2}, M. Glatzle^{1,3}, and T. A. Enßlin^{1,2}

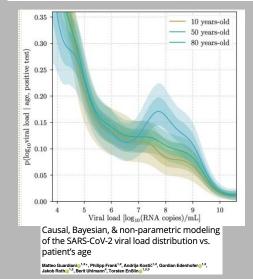
Variable structures in M87* from space, time and frequency resolved interferometry

Philipp Arras^{1,2}, Philipp Frank^{1,3}, Philipp Haim¹, Jakob Knollmüller^{1,2}, Reimar Leike¹, Martin Reinecke¹, and Torsten EnBlin¹

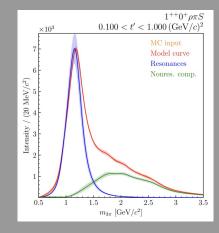
Astrophysics



Radiation biology, radio astronomy and cosmic rays using information field theory



Biology



Hadron Physics?

ftpwa Privat	e	⊙ Unwatch 3 ▼	9 9 Fork 0 ▼	★ Starred 3 +
💱 main 👻 🐉 10 Branches 🛇 0 Tags	Q Go to file	d file 👻 <> Code 👻	About	
😰 fkaspar Updated scaling 🚥	2abbf98 · 3 hour	rs ago 🕚 199 Commits		ines information field Is with partial-wave

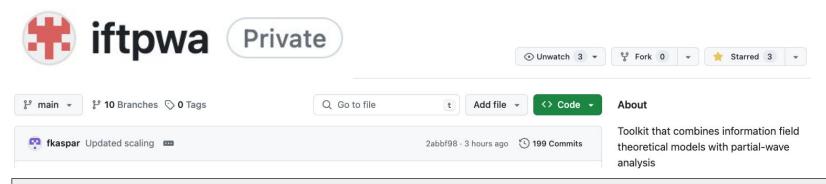
- Application of Numerical Information Field Theory (NIFTy)
 - Adapted by COMPASS [Florian Kaspar, Stephen Paul, Stephen Wallner, ODSL, ...] for Hadron Physics
 - <u>see below:</u> EPJ Web Conf. 291 (2024), 02014
 - **GlueX** exploring use case + contributing to project
- Modular model building framework mixing parametric (i.e. Breit-Wigner, K-matrices, ...) and non-parametric contributions (Gaussian Process)

Progress in the Partial-Wave Analysis Methods at COMPASS

Florian Markus Kaspar^{1,2,*}, *Julien* Beckers^{1,**}, and *Jakob* Knollmüller^{1,2,***} *for the COMPASS Collaboration*

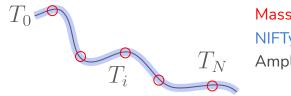
¹Technische Universität München, Physik Department, James-Franck-Straße 1, 85748 Garching bei München
²Excellence Cluster Origins, Boltzmannstraße 2, 85748 Garching bei München

Abstract. We study the excitation spectrum of light and strange mesons in diffractive scattering. We identify different hadron resonances through partial



How does it work?

- Kinematically bin the data like typical Mass Indep. Fit $\
 ightarrow D_i$
- Each bin described by a set of partial wave amplitudes $ightarrow T_i$
- iftpwa will model the Fields $\{T_0, ..., T_N\}$ enforce smoothness across kinematics • increasing fit stability (ambiguities / numerical)



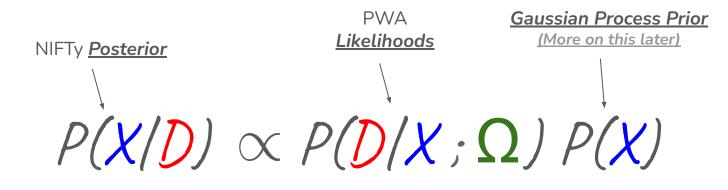
Mass bins

NIFTy Latent Posterior Model

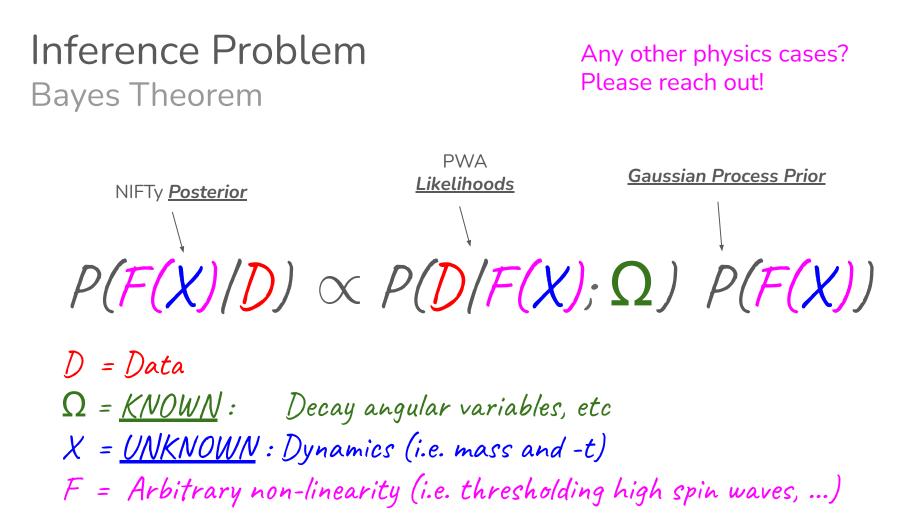
Amplitudes at mass bin

Inference Problem

Bayes Theorem

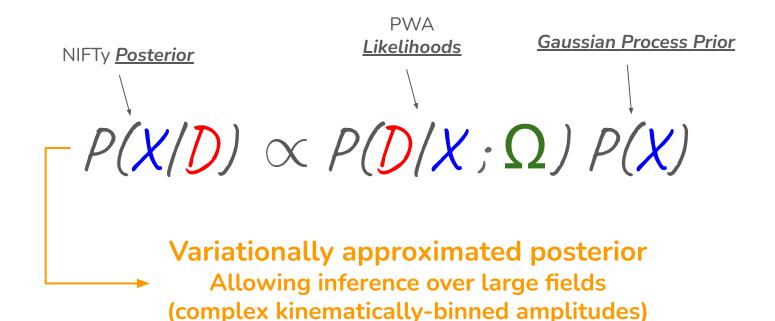


- D = Data
- $\Omega = \underline{KNOWN}: \quad Decay \text{ angular variables, etc} \\ X = \underline{UNKNOWN}: Dynamics (i.e. mass and -t)$



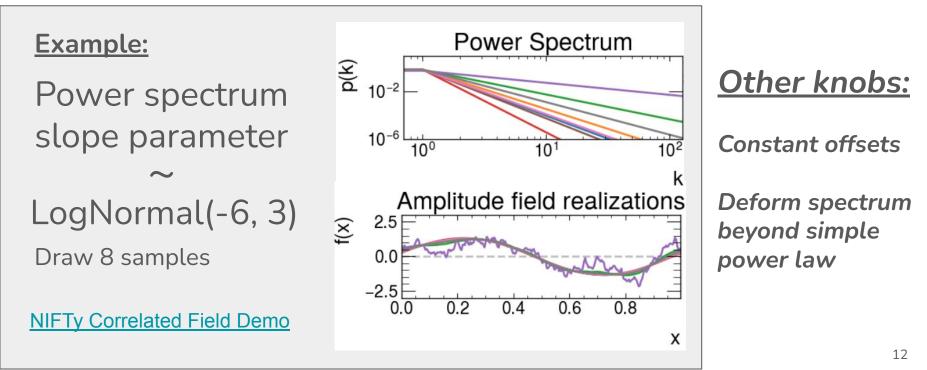
Inference Problem

Bayes Theorem

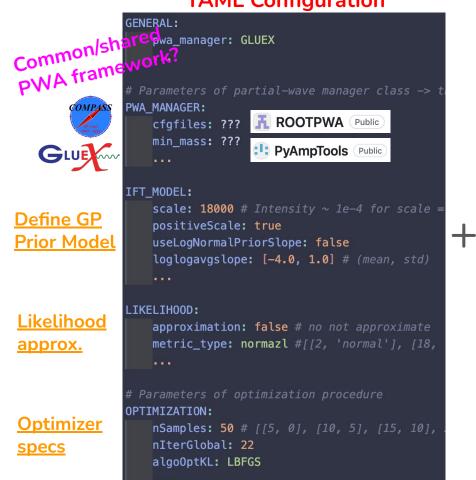


Gaussian Process Prior

• Kernels are defined in Fourier Space whose parameters (~5 of them) are Log-Normally Distributed



YAML Configuration



Parametric model Cfg

def etapi_a2a2p():

```
m_a2_1320 = LogNormal(sigma=0.0013 * 30, mean=1.3186)
w_a2_1320 = LogNormal(sigma=0.002 * 30, mean=0.105)
```

```
m_a2_1700 = LogNormal(sigma=0.05, mean=1.700)
w_a2_1700 = LogNormal(sigma=0.05, mean=0.300)
```

resonances = { Resonance "a2 1320": { parameter priors "name": "\$a 2(1320)\$", "fun": breitwigner_normed, "paras": {"mass": m_a2_1320, "width": w a2 1320}, "waves": 'reaction 000::NegIm::Dm2-', 'reaction 000::NegIm::Dm1-', **Resonance** specs "a2_1700": { "name": "\$a 2(1700)\$", as a dictionary "fun": breitwigner normed, "preScale": 0.25, "paras": {"mass": m_a2_1700, "width": w_a2_1700}, "waves": 'reaction_000::NegIm::Dm2-', 'reaction_000::NegIm::Dm1-', }.

smoothScales = False
return resonances, smoothScales

Input / Output Tests

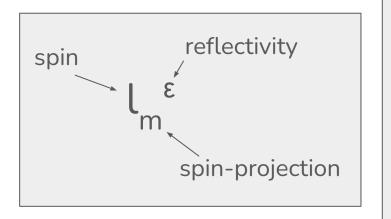
 $P(X/D) \propto P(D/X; \Omega) P(X)$

Gaussian Process Prior

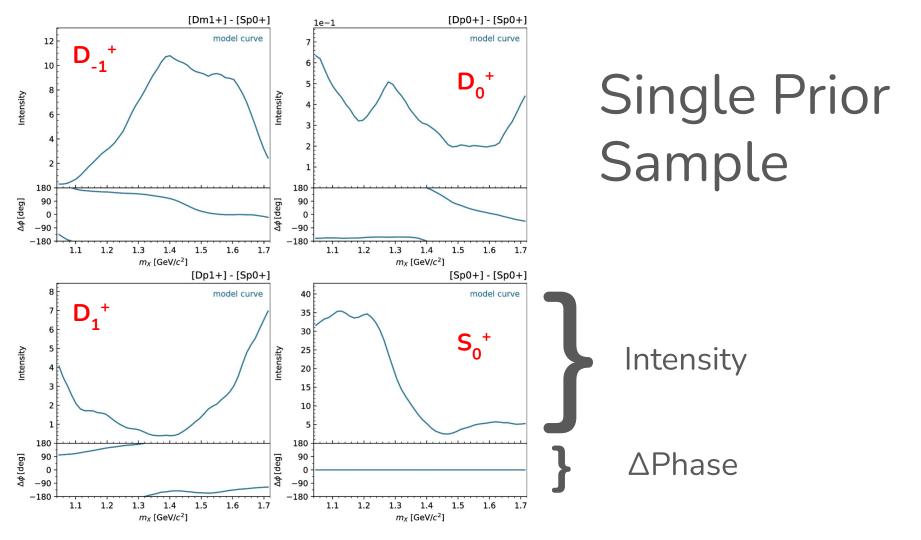
P(X) describes a distribution of potential functions

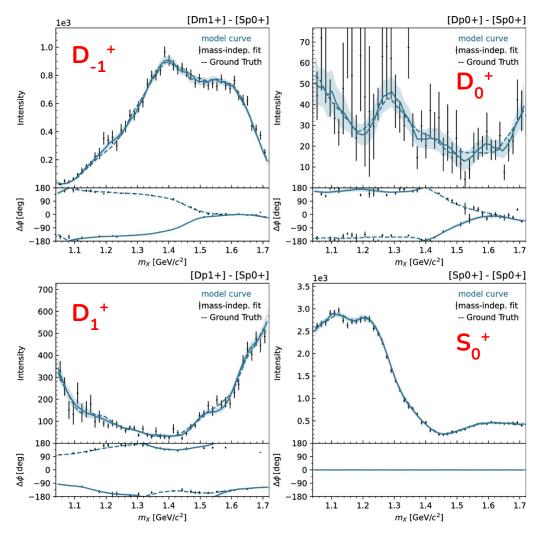
- Draw a sample from the prior
- Generate events with the sampled functional form of the amplitude
- Fit the events using
 - 1) Binned maximum likelihood
 - 2) ift framework

I/O Study 1



- Polarized photoproduction of two pseudoscalar : $\gamma p \rightarrow \eta \pi^0 p \rightarrow 4\gamma p$
 - Amplitudes described in:
 [V.Mathieu et.al. (JPAC), Phys.Rev.D 100 (2019) 5, 054017]
- No physics, no resonances, arbitrary but smooth amplitudes
- Positive reflectivity Waveset:
 D₋₁⁺ D₀⁺ D₁⁺ S₀⁺





Dashed blue line := ground truth

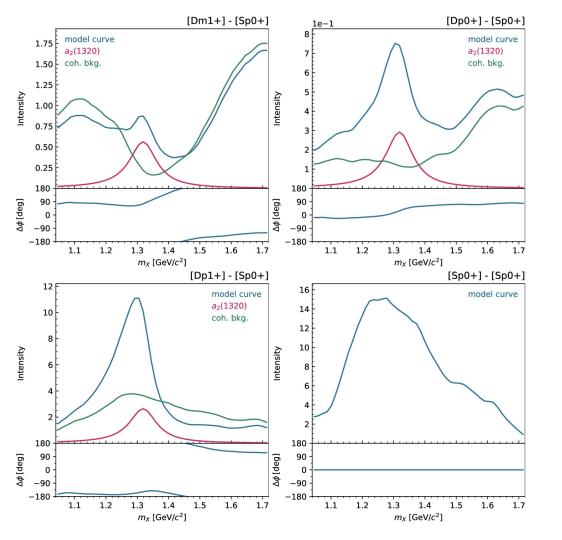
Blue line := ift mean Blue fill := ift standard deviation

Black error bars := Mass indep. fits

- Both methods perform well
- Binned fits have more scatter
- ift results:
 - captures truth within uncertainties
 - finds the trivial ambiguity

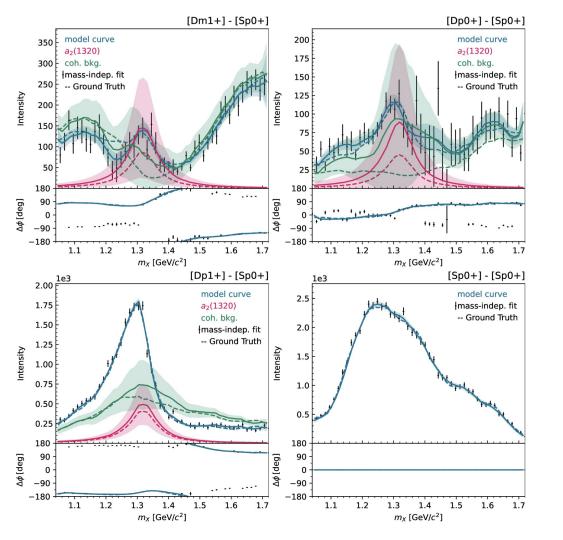
I/O Study 2

Same as Study 1 but with a₂(1320) Breit-Wigner resonance + Coherent non-parametric background



Single Prior Sample

model curve a₂(1320) coh. bkg.



model curve a₂(1320) coh. bkg.

Individual components are mostly recovered (within uncertainties)

Recap | Bayesian Approach: Self-consistent Model Generation / Fitting

Easily generate models with complex (but also interpretable) dynamics

Fit data under assumption that the data could \approx be one of these complex models

GlueX Data: $\gamma p \rightarrow \eta \pi^0 p \rightarrow 4 \gamma p$

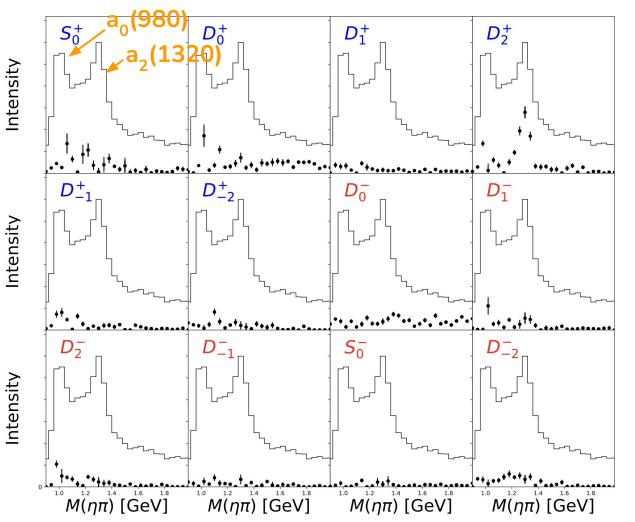
 $0.88 < M(\eta\pi) < 2.0 \text{ GeV}$ $0.1 < -t < 0.2 \text{ GeV}^2$ GlueX Phase-I **Data** in coherent peak All S, D waves (both reflectivities)

More Information: Refer to Malte's talk on Tuesday: Search for Exotic Hadrons in $\eta\pi$ and $\eta'\pi$ at GlueX

Much more complex fit!

Run ift analysis with:

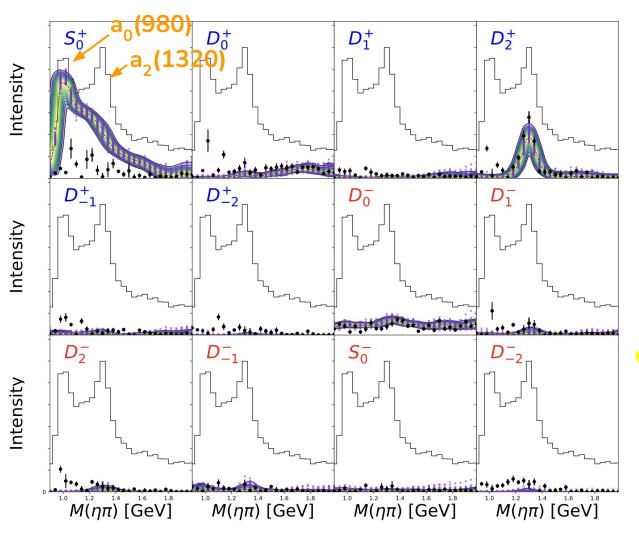
- Breit-Wigner for a₂(1320) and a₂(1700)
- Coherent Gaussian Process background



```
GlueX Data: \gamma p \rightarrow \eta \pi^0 p \rightarrow 4 \gamma p
```

• Best / 20 MLE mass-indep fits with random starting parameters

Massive leakage out of the S-wave!



GlueX Data: $\gamma p \rightarrow \eta \pi^0 p \rightarrow 4 \gamma p$

Is the set / 20 MLE mass-indep fits with random starting parameters

x : IFT posterior samples

Contours are from a density estimate of x

Conclusion

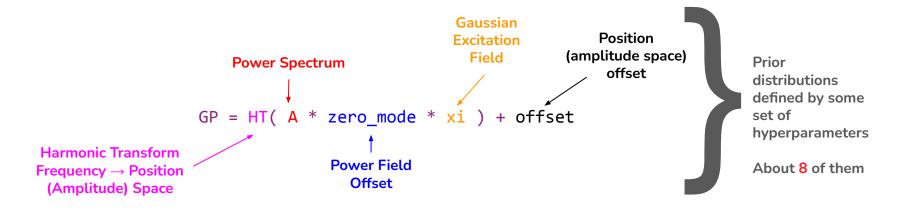
• iftpwa is a model building framework allowing mixing of parametric and non-parametric components

Florian's end of summer plan? (No guarantees of course!)

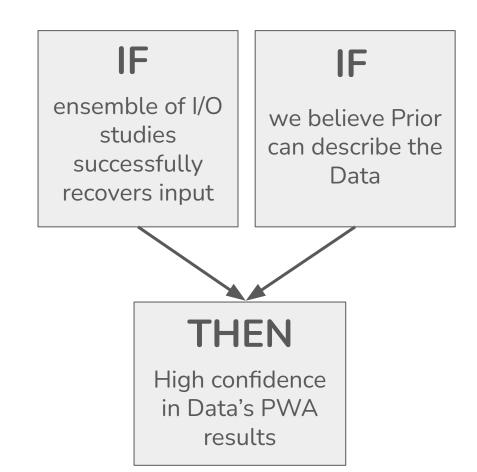
- Publication on the method
- **Release** of the framework

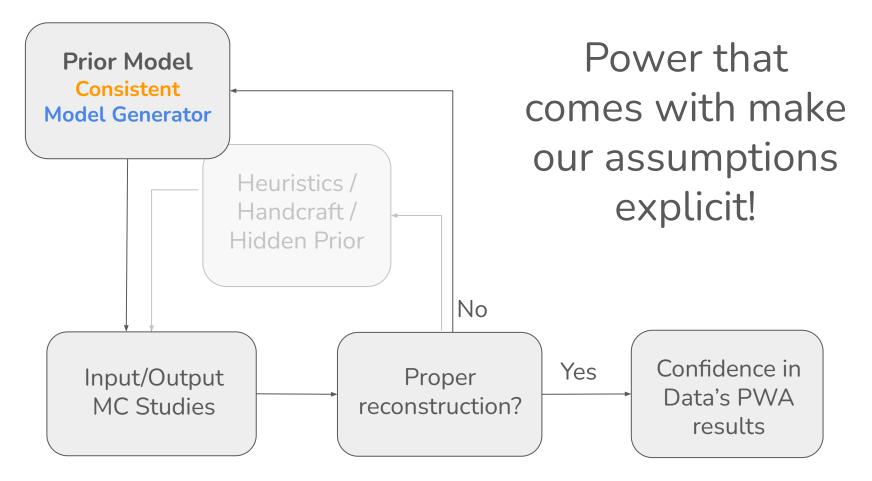
Backup

Gaussian Process Prior

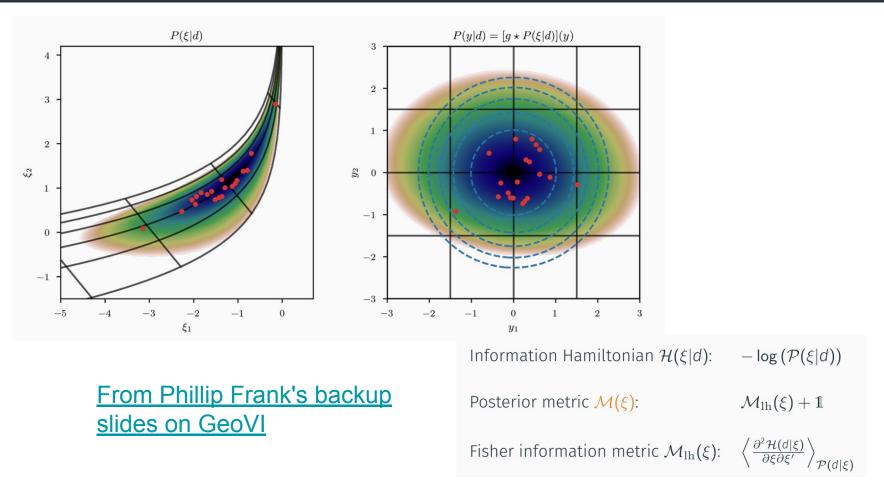


Can generate arbitrarily complex dynamics with arbitrary levels of interference for I/O studies!





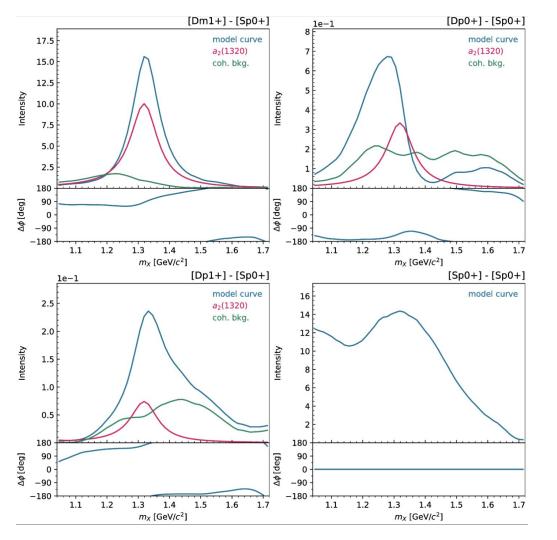
GEOMETRIC VARIATIONAL INFERENCE (GEOVI) [?]



30

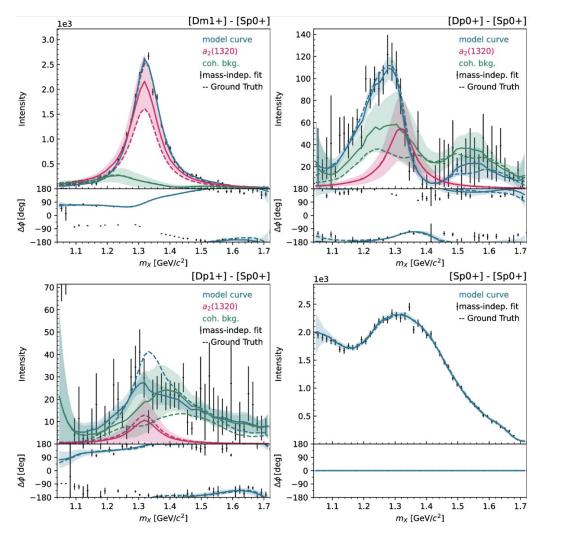
Ecosystem?

Top 6 by 🛧 Starred	
awkward Public Manipulate JSON-like data with NumPy-like idioms. MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
● Python 🟠 797 Ф BSD-3-Clause 🚏 80 📀 100 (5 issues need help) 🏌 13 Updated 2 days ago	
iminuit (Public)	
Jupyter-friendly Python interface for C++ MINUIT2	1m hhm
● Python ☆ 273 ♀ 70 ⊙ 14 ┆ 0 Updated 2 days ago	
pyhf (Public) pure-Python HistFactory implementation with tensors and autodiff	mmmmm
 Python ☆ 273 垫 Apache-2.0 % 78 ③ 385 (27 issues need help) \$\$ 39 Updated 3 days ago uproot5 Public ROOT I/O in pure Python and NumPy. Python ☆ 221 極 BSD-3-Clause % 67 ④ 44 \$\$ 6 Updated 2 days ago 	
6 Public Extended histogram plotting on top of matplotlib and HEP collaboration compatible styling	^
● Python 🏠 177 Ф MIT 😵 60 📀 23 (1 issue needs help) 🏌 4 Updated last week	
particle Public Package to deal with particles, the PDG particle data table, PDGIDs, etc.	h
● Python ☆ 145 Ф BSD-3-Clause 😵 23 ⊙ 8 🎲 1 Updated last week	31



Single Prior Sample

model curve a₂(1320) coh. bkg.



model curve a₂(1320) coh. bkg.

Individual components are mostly recovered (within uncertainties)