Progress in Coupled-Channel ThreePion Scattering for (In)Finite volume

Yuchuan Feng

fengyuchuan@gwu.edu
May $30^{\text {th }} 2024$
THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Outline

Finite-Volume Calculations

3-Body Dynamics

Hadronization

- Confinement into colorneutral hadrons
- Mass generation of hadrons
- Resonances: key phenomena connecting QCD and experiment

Non-perturbative quark-gluon dynamics in QCD

Experiments

Decay mode	Resonance	$\mathcal{B}(\%)$
Leptonic decays		35.2
$\tau^{-} \rightarrow \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}} v_{\tau}$		17.8
$\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}$		17.4
Hadronic decays		64.8
$\tau^{-} \rightarrow \mathrm{h}^{-} v_{\tau}$		
$\tau^{-} \rightarrow \mathrm{h}^{-} \pi^{0} v_{\tau}$	$\rho(770)$	25.5
$\tau^{-} \rightarrow \mathrm{h}^{-} \pi^{0} \pi^{0} v_{\tau}$	$\mathrm{a}_{1}(1260)$	9.5
$\tau^{-} \rightarrow \mathrm{h}^{-} \mathrm{h}^{+} \mathrm{h}^{-} v_{\tau}$	$\mathrm{a}_{1}(1260)$	9.8
$\tau^{-} \rightarrow \mathrm{h}^{-} \mathrm{h}^{+} \mathrm{h}^{-} \pi^{0} v_{\tau}$		4.8
Other $\quad \boldsymbol{h}^{ \pm}$refers to charged pions	3.3	

a1(1260) decay involves three-body dynamics
$a_{1}(1260) \quad I^{G}\left(J^{P C}\right)=1^{-}\left(1^{++}\right)$

[PDG]

τ-decay

Kinematics

$$
a_{1}(1260) \quad I^{G}\left(J^{P C}\right)=1^{-}\left(1^{++}\right)
$$

 Sub-energy: $\sqrt{\sigma}$

IS-SP Interaction \rightarrow Lots of channels
= Isobar (Two stable particles interact)

- Spectator (The third particle)

Three-body Unitarity

"Conservation of probability"

$$
\left.S S^{\dagger}=\mathbb{1} \quad: \begin{array}{ll}
\left\langle q_{1}, q_{2},-q_{3}\right|\left(\bar{T}-\hat{T}^{\dagger} \mid\right. & \left.p_{1}, p_{2}, p_{3}\right\rangle \\
\hdashline-
\end{array}\right]=\begin{aligned}
& i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
\end{aligned}
$$

$\widehat{T}: 3 \rightarrow 3$ amplitude

Connected
Disconnected

Three-body Unitarity
(1)

(2)

Scattering Equation

$$
T\langle q| T(s)|p\rangle=\langle q| B(s)|p\rangle+\langle q| C(s)|p\rangle+\int \frac{d^{4} k}{(2 \pi)^{4}}\langle q|(B(s)+C(s))|k\rangle \tau(\sigma(k))\langle k| T(s)|p\rangle,
$$

- General Ansatz Bethe-Salpeter equation (BSE)
- Derive manifestly unitary amplitude (similar to Lippman-Schwinger equation (LSE))

Exchange:

- Complex
- Required by unitarity

Contact term:

- Does not destroy unitarity
- Free parametrization: fit to data

Partial-wave decomposition

- Plane-wave basis
(Finite volume)

$$
\begin{aligned}
& T_{\lambda^{\prime} \lambda}\left(p, \boldsymbol{q}_{1}\right)=\left(B_{\lambda^{\prime} \lambda}\left(p, \boldsymbol{q}_{1}\right)+C\right)+ \\
& \sum_{\lambda^{\prime \prime}} \int \frac{d^{3} l}{(2 \pi)^{3} 2 E_{l}}\left(B_{\lambda^{\prime} \lambda^{\prime \prime}}(p, l)+C\right) \tau(\sigma(l)) T_{\lambda^{\prime \prime} \lambda}\left(l, \mathbf{q}_{1}\right)
\end{aligned}
$$

- JLS basis:
(Infinite volume)

$$
\begin{aligned}
& T_{L L^{\prime}}^{J}\left(q_{1}, p\right)=\left(B_{L L^{\prime}}^{J}\left(q_{1}, p\right)+C_{L L^{\prime}}\left(q_{1}, p\right)\right)+ \\
& \int_{0}^{\Lambda} \frac{\mathrm{d} l l^{2}}{(2 \pi)^{3} 2 E_{l}}\left(B_{L L^{\prime \prime}}^{J}\left(q_{1}, l\right)+C_{L L^{\prime \prime}}\left(q_{1}, l\right)\right) \tau(\sigma(l)) T_{L^{\prime \prime} L^{\prime}}^{J}(l, p)
\end{aligned}
$$

Upgrade to 4-channel model

```
\Gamma(\mp@subsup{a}{1}{}(1260)->(\rho\pi\mp@subsup{)}{S\mathrm{ -wave }}{},\rho->\pi\pi)/\mp@subsup{\Gamma}{\mathrm{ total }}{}
```

$\operatorname{VALUE}\left(10^{-2}\right)$ EVIS DOCUMENTID TECN COMMENT
$60.19 \quad 37 \mathrm{k} \quad{ }^{1}$ ASNER $\quad 2000 \quad$ CLE2 $\quad 10.6 e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$

Old: isobar in P-wave [Sadasivan 2021 PRD] New: isobars in S-wave

$\pi \rho \xrightarrow{S \rightarrow S} \pi \rho$	$\pi \rho \xrightarrow{D \rightarrow S} \pi \rho$	$\pi \sigma \xrightarrow{P \rightarrow S} \pi \rho$	$\pi(\pi \pi)_{2} \xrightarrow{P \rightarrow S} \pi \rho$
$\pi \rho \xrightarrow{S \rightarrow D} \pi \rho$	$\pi \rho \xrightarrow{D \rightarrow D} \pi \rho$	$\pi \sigma \xrightarrow{P \rightarrow D} \pi \rho$	$\pi(\pi \pi)_{2} \xrightarrow{P \rightarrow D} \pi \rho$
$\pi \rho \xrightarrow{S \rightarrow P} \pi \sigma$	$\pi \rho \xrightarrow{D \rightarrow P} \pi \sigma$	$\pi \sigma \xrightarrow{P \rightarrow P} \pi \sigma$	$\pi(\pi \pi)_{2} \xrightarrow{P \rightarrow P} \pi$
$\pi \rho \xrightarrow{S \rightarrow P} \pi(\pi \pi)_{2}$	$\pi \rho \xrightarrow{D \rightarrow P} \pi(\pi \pi)_{2}$	$\pi \sigma \xrightarrow{P \rightarrow P} \pi(\pi \pi)_{2}$	$\pi(\pi \pi) \xrightarrow{P \rightarrow P} \pi(\pi \pi)_{2}$

- $\sigma: f_{0}(500) ;(\pi \pi)_{2}:$ repulsive isospin $\mathrm{I}=2$ channel
- Systematic inclusion of all possible isobars up to P-wave
- More channels will be included

To Finite Volume

LQCD: Quantization Condition (QC)

- Impose periodic Boundary Condition (Lattice)

Infinite volume
Continuous momenta

$$
\psi(\boldsymbol{r})=\psi\left(\boldsymbol{r}+L \hat{\boldsymbol{e}_{i}}\right)=e^{\hat{2 n \pi i} \hat{\hat{\boldsymbol{e}_{i} \cdot} \cdot \boldsymbol{p}_{\mathrm{op}}}} \psi(\boldsymbol{r})
$$

Finite volume

$$
\boldsymbol{p}=2 \pi \boldsymbol{n} / L \text { for } \boldsymbol{n} \in \mathbb{Z}^{3}
$$

Energy spectrum: $\underset{3 m_{\pi}}{\square}$

$$
\int \frac{d^{3} p}{(2 \pi)^{3}} f(\boldsymbol{p}) \rightarrow \frac{1}{L^{3}} \sum_{p \in 2 \pi / L Z^{3}} f(\boldsymbol{p}) \quad \underset{3 m_{\pi}}{0} 00-\frac{0}{\sqrt{s}}
$$

- Phase shifts
- Pole positions

Discrete energy spectrum (from LQCD)

Results

$T=(B+C)+(B+C) \tau T$
First extraction 3-body resonance from lattice QCD (2 channels)

$$
T=\frac{B+C}{1-(B+C) \tau}
$$

Quantization Condition (QC)

$0=\operatorname{det}\left[B(s)+\underset{\text { fit parameters }}{C(s)}-E_{L}\left(\tilde{K}_{2}^{-1}(s)-\Sigma_{2}^{L}(s)\right)\right] \underset{\left(\boldsymbol{p}^{\prime} \boldsymbol{p}\right)}{\left(\lambda^{\prime} \lambda\right)}$

- Generalization of QC to 4-channels achieved,

All isobars up to P-wave are included:
$a_{1} \leftrightarrow(\pi \rho)_{S} \leftrightarrow(\pi \rho)_{D} \leftrightarrow(\pi \sigma)_{P} \leftrightarrow\left(\pi(\pi \pi)_{S, I=2}\right)$

- Analysis is on the way
[YF et al., in preparation]

$$
a_{1}(1260) \rightarrow \pi \rho \quad[\text { Mai et al., PRL } 2021]
$$

- Extension to $\eta \pi \pi+K \bar{K} \pi$ in finite volume: [Z. Draper, S.

To Infinite Volume

Production amplitude

$$
T_{L^{\prime} L}\left(q_{\text {out }}, p_{\text {in }}\right) \rightarrow \breve{\Gamma}_{L^{\prime}}\left(q_{\text {out }}\right)
$$

- An example of a1(1260) lineshape (ALEPH data) from the decay

$$
\tau^{-} \rightarrow \pi^{-} \pi^{-} \pi^{+} \nu_{\tau}
$$

Disconnected part $=$ Traditional Isobar model

Dalitz plots

- CLEO data [Phys.Rev.D 61 (2000) 012002]
- Channel dynamics mostly visible in Dalitz plots, not line shape
- Large data set for τ Dalitz decays
- Need more channels for combined analysis of Dalitz plots.
- Analyze future data with different final states $\pi \pi \pi / \pi K \bar{K}$

FIG. 5. Dalitz plot distributions for data and fit result. Here s_{i} is taken to be the higher al the two values of $M_{\pi-\pi^{0}}^{2}$ in each event. Bins 1 through 8 correspond to slices in $\sqrt{8}=0.6-0.9$, $0.9-1.0,1.0-1.1,1.1-1.2,1.2-1.3,1.3-1.4,1.1-1.5,1.5-1.8 \mathrm{GeV}_{\text {- }}$

Partial-wave projection

$$
B_{L^{\prime} L}\left(q_{\text {out }}, p_{\text {in }}\right) \rightarrow T_{L^{\prime} L}\left(q_{\text {out }}, p_{\text {in }}\right) \rightarrow \breve{\Gamma}_{L^{\prime}}\left(q_{\text {out }}\right)
$$

$$
B_{\lambda^{\prime} \lambda}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\frac{I_{f} v_{\lambda^{\prime}}^{*}\left(P-p-p^{\prime}, p\right) v_{\lambda}\left(P-p-p^{\prime}, p^{\prime}\right) f\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)}{2 E_{p^{\prime}+p}}
$$

$$
x=\cos \left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right), E_{p+p^{\prime}}^{2}=m_{\pi}^{2}+p^{2}+p^{\prime 2}+2 p p^{\prime} x,
$$

$$
f\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\frac{1}{\sqrt{s}-E_{p}-E_{p^{\prime}}-E_{p+p^{\prime}}+i \epsilon}
$$

Forward propagator
Logarithmic Singularities

$$
\begin{array}{r}
B_{\lambda^{\prime} \lambda}\left(p^{\prime}, p\right)=2 \pi \int_{-1}^{+1} d x d_{\lambda^{\prime} \lambda}^{J}(x) B_{\lambda^{\prime} \lambda}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right) \\
B_{L^{\prime} L}\left(p^{\prime}, p\right)=U_{L^{\prime} \lambda^{\prime}} B_{\lambda^{\prime} \lambda}\left(p^{\prime}, p\right) U_{\lambda L}
\end{array}
$$

Projection: Plane-wave \rightarrow Partial-wave
Projection: Helicity \rightarrow JLS

Solving scattering equation for complex momenta

$f\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\frac{1}{\sqrt{s}-E_{p}-E_{p^{\prime}}-E_{p+p^{\prime}}+i \epsilon}$

- Avoid vanishing denominator at
$p_{ \pm}^{\prime}=\frac{p x\left(p^{2}-\alpha^{2}\right) \pm \alpha \sqrt{\left(\beta+p^{2}\left(x^{2}-1\right)\right)^{2}-4 m_{\pi}^{2} \beta}}{2 \beta}$, $\alpha(p)=\sqrt{s}-E_{p}, \quad \beta(p, x)=\alpha^{2}(p)-p^{2} x^{2}$.

Critical Region

Heatherington and Schick method

The Quantum Mechanical ThreeBody Problem
Vieweg Tracts in Pure and Applied Physics
1st Edition - January 1, 1974
Authors: Erich W. Schmid, Horst Ziegelmann Editor: H. Stumpf • Language: English
eBook ISBN: 9781483160788

Heatherington and Schick method

$$
B^{\sim} f\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\frac{1}{\sqrt{s}-E_{p}-E_{p^{\prime}}-E_{p+p^{\prime}}+i \epsilon} \quad B_{\lambda^{\prime} \lambda}\left(p^{\prime}, p\right)=2 \pi \int_{-1}^{+1}{ }_{d x} d_{\lambda^{\prime} \lambda}^{J}(x) B_{\lambda^{\prime} \lambda}\left(\boldsymbol{p}^{\prime}, p\right)
$$

3D plot: Integrate over the angle

$$
\sqrt{s}=7.6 m_{\pi}, q=3.4 m_{\pi}
$$

$\operatorname{Re} p\left[m_{\pi}\right]$

Connection between sheets

Discontinuity: 2 times of

$$
d_{f}=\operatorname{Im} \int_{-1}^{1} d x f\left(\boldsymbol{q}^{\prime}, \boldsymbol{q}\right) . \quad f\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=\frac{1}{\sqrt{s}-E_{p}-E_{p^{\prime}}-E_{p+p^{\prime}}+i \epsilon}
$$

Smooth transition between 1st sheet (orange) and 2nd sheet (greqn)

Preliminary results

Lineshape Modification

Solid line: Full Dashed line: Disc

Red: Re
Blue: Im

Lineshape Modification

- Isobar lineshapes modification through 3body effects

Extension to strangeness

Isobar $\left(S_{I}, I_{I}\right)$ HB basis (11 Ch.) JLS basis (9 Ch .)	$\begin{gathered} \hline(1,1) \\ \pi \rho_{\lambda= \pm 1,0} \\ (\pi \rho)_{S} \mid(\pi \rho)_{D} \end{gathered}$	$\begin{gathered} (1,1 / 2) \\ K K_{\lambda= \pm 1,0}^{*} \\ \left(K K^{*}\right)_{S} \mid\left(K K^{*}\right)_{D} \end{gathered}$	$\pi \sigma$ $(\pi \sigma)_{P}$	$\begin{aligned} & (0,0) \\ & \pi(K \bar{K})_{S} \\ & \left(\pi(K \bar{K})_{S}\right)_{P} \end{aligned}$	$\begin{aligned} & (0,2) \\ & \pi \pi_{2} \\ & \left(\pi \pi_{2}\right)_{S} \end{aligned}$	$\left\lvert\, \begin{aligned} & (0,1 / 2) \\ & K \kappa \\ & (K \kappa \kappa) S\end{aligned}\right.$	$\begin{aligned} & (0,3 / 2) \\ & K(\pi K)_{S} \\ & \left(K(\pi K)_{S}\right)_{P} \end{aligned}$	
	$f_{0}(500) \leftrightarrow f_{0}(980)$					$\underset{K_{0}^{*}(700}{\\|}$		

$$
T_{j i}\left(s, p^{\prime}, p\right)=\tilde{B}_{j i}\left(s, p^{\prime}, p\right)+\tilde{C}_{j i}\left(s, p^{\prime}, p\right)+\int_{0}^{\Lambda} \frac{\mathrm{d} l l^{2}}{(2 \pi)^{3} 2 E_{l}}\left(\tilde{B}_{j k}\left(s, p^{\prime}, l\right)+\tilde{C}_{j k}\left(s, p^{\prime}, l\right)\right) \tilde{\tau}_{k}\left(\sigma_{l}\right) \tilde{T}_{k j}(s, l, p)
$$

2-body input

$$
\text { More 2-body inputs: } \quad \eta^{00} \quad \delta_{K \dot{I}}^{00}
$$

$$
\delta_{1 / 20, K \pi} I=\frac{1}{2} J=0
$$

Find data resources from [Doering JHEP 01 (2012) 009]

Prelim Results

7-channel model T-matrix

$$
\left.\left.\begin{array}{c|c|c|l|l}
\pi \rho_{\lambda= \pm 1,0} & K K_{\lambda= \pm 1,0}^{*} & \pi \sigma & \pi(K \bar{K})_{S} & \pi \pi_{2} \\
(\pi \rho)_{S} & (\pi \rho)_{D} & \left(K K^{*}\right)_{S} & \left(K K^{*}\right)_{D} & (\pi \sigma)_{P}
\end{array}\right)\left(\pi(K \bar{K})_{S}\right)_{P}\right)\left(\pi \pi_{2}\right)_{S} .
$$

Prelim results 2

Production amplitude (strangeness): Only the (non-trivial) re-scattering piece
Without final isobar decay

Rescattering generates phase motion of the three-body amplitude

Summary and outlook

- Finite volume: Four-channel quantization condition allows for better determination of a_{1} amplitude and other spins/isospins (in progress).
- Infinite volume:
- Quantify line-shape modification and phase motion induced by three-body effects beyond traditional isobar model
- Inclusion of kaons (+eta) will allow to analyze different final states (help needed!)
- Allows for consistent inclusion of triangles as coupled-channel transition ($a_{1}(1420)$)
- Can some resonances be generated by nonlinear meson dynamics from three-body unitarity?

(c)

For questions

Delta00

$$
S=\left[\begin{array}{ll}
\eta e^{2 i \delta_{1}} & i\left(1-\eta^{2}\right)^{1 / 2} e^{i\left(\delta_{1}+\delta_{2}\right)} \\
i\left(1-\eta^{2}\right)^{1 / 2} e^{i\left(\delta_{1}+\delta_{2}\right)} & \eta e^{2 i \delta_{2}}
\end{array}\right]
$$

$$
[\tilde{C}(s)]_{\left(\boldsymbol{p}^{\prime}, j\right)(\boldsymbol{p}, i)}=\frac{3}{4 \pi} \sum_{M=-1}^{1} \mathfrak{D}_{-M-\lambda(j)}^{1 *}\left(\phi_{-\boldsymbol{p}^{\prime}}, \theta_{-\boldsymbol{p}^{\prime}}, 0\right) \tilde{C}_{j i}\left(s, p^{\prime}, p\right) \mathfrak{D}_{-M-\lambda(i)}^{1}\left(\phi_{-\boldsymbol{p}}, \theta_{-\boldsymbol{p}}, 0\right)
$$

with $\quad \tilde{C}_{j i}\left(s, p^{\prime}, p\right)=U_{j L^{\prime}} \tilde{C}_{L^{\prime} L}\left(s, p^{\prime}, p\right) U_{L i} \quad$ for $\quad U_{L j}=\left(\begin{array}{cccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} & 0\end{array}\right)_{L j}$
with $\quad \tilde{C}_{L^{\prime} L}\left(s, p^{\prime}, p\right)=\sum_{i=0}^{\infty}\left(p^{\prime}\right)^{L^{\prime}} \cdot \tilde{c}_{L^{\prime} L}^{(i)}(s)^{i} \cdot(p)^{L}$.

Extrapolation to real momenta

$$
T_{L^{\prime} L}\left(q_{\text {out }}, p_{\text {in }}\right) \rightarrow \breve{\Gamma}_{L^{\prime}}\left(q_{\text {out }}\right)
$$

First try: Pade fit

$$
\breve{\Gamma}_{L}\left(q_{1}\right)=\left(\frac{q_{1}}{m_{\pi}}\right)^{L} H\left(q_{1}\right) \frac{\sum_{j=0}^{m} a_{j}^{L}\left(q_{1} / m_{\pi}\right)^{j}}{\sum_{k=0}^{n} b_{k}^{L}\left(q_{1} / m_{\pi}\right)^{k}}
$$

Finite volume 2-body input

$$
\begin{align*}
& \Sigma_{n, \lambda^{\prime} \lambda}^{L}(s, \boldsymbol{p})=\frac{J(\boldsymbol{p})}{L^{3}} \sum_{k \in \mathcal{S}_{L}} \frac{\sigma_{p}^{n}}{\left(4 E_{k^{\star}}^{2}\right)^{n}} \frac{\epsilon_{\lambda^{\prime}}^{\star \nu *}\left(\boldsymbol{P}_{3}-\boldsymbol{p}\right)\left(P_{\nu}^{\star}-p_{\nu}^{\star}-2 k_{\nu}^{\star}\right) \epsilon_{\lambda}^{\star \mu}\left(\boldsymbol{P}_{3}-\boldsymbol{p}\right)\left(P_{\mu}^{\star}-p_{\mu}^{\star}-2 k_{\mu}^{\star}\right)}{2 E_{k^{\star}}\left(\sigma_{p}-4 E_{k^{\star}}^{2}\right)} . \\
& \boldsymbol{k}^{\star}(s, \boldsymbol{k}, \boldsymbol{p})=\boldsymbol{k}+\boldsymbol{p}\left(\frac{\boldsymbol{k} \cdot \boldsymbol{p}}{\boldsymbol{p}^{2}}(J(s, \boldsymbol{p})-1)+\frac{1}{2} J(s, \boldsymbol{p})\right), \quad J(s, \boldsymbol{p})=\frac{\sqrt{\sigma_{p}}}{\sqrt{s}-E_{\boldsymbol{p}}}, \\
& \tau_{\lambda^{\prime} \lambda}^{-1}\left(\sigma_{p}\right)=\delta_{\lambda^{\prime} \lambda} \tilde{K}_{n}^{-1}(s, \boldsymbol{p})-\Sigma_{n, \lambda^{\prime} \lambda}(s, \boldsymbol{p}), \tag{4}\\
& \tilde{K}_{n}^{-1}(s, \boldsymbol{p})=\sum_{i=0}^{n-1} a_{i} \sigma_{p}^{i} \text { and } \Sigma_{n, \lambda^{\prime} \lambda}(s, \boldsymbol{p})= \\
& \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\sigma_{p}^{n}}{\left(4 E_{k}^{2}\right)^{n}} \frac{\hat{v}_{\lambda^{\prime}}^{*}(P-p-k, k) \hat{v}_{\lambda}(P-p-k, k)}{2 E_{k}\left(\sigma_{p}-4 E_{k}^{2}+i \epsilon\right)} .
\end{align*}
$$

LQCD DATA

Table I. Details of the GWQCD $N_{f}=2$ ensemble parameters used in this work. Here a is the lattice spacing, $N_{\text {cfg }}$ the number of Monte-Carlo configurations for each ensemble. The pion and kaon masses are $a M_{\pi}$ and $a M_{K}$, respectively. The errors on every value are purely stochastic except the lattice spacing which includes an estimated 2% systematic uncertainty.

Ensemble	$N_{t} \times N^{3}$	a / fm	$N_{\text {cfg }}$	$a M_{\pi}$	$a f_{\pi}$	$a M_{K}$	$a f_{K}$
2448	48×24^{3}	$0.1210(2)(24)$	300	$0.1931(4)$	$0.0648(8)$	$0.3236(3)$	$0.1015(2)$
2464	64×24^{3}	$0.1215(3)(24)$	400	$0.1378(6)$	$0.0600(10)$	$0.3132(3)$	$0.0980(2)$

Heatherington and Schick method

$$
\begin{aligned}
& T(s, q, p)=B^{I}(s, q, p)-\int_{0}^{P(q)} \frac{d q^{\prime \prime}\left(q^{\prime \prime}\right)^{2}}{(2 \pi)^{3} 2 E_{q^{\prime \prime}}} \operatorname{Im} B^{I I}\left(s, q, q^{\prime \prime}\right) \tau\left(\sigma\left(q^{\prime \prime}\right)\right) T\left(s, q^{\prime \prime}, p\right) \\
& +\int_{\Gamma_{I I}} \frac{d l l^{2}}{(2 \pi)^{3} 2 E_{l}} B^{I I}(s, q, l) \tau(\sigma(l)) T(s, l, p)+\int_{\Gamma_{I}} \frac{d l l^{2}}{(2 \pi)^{3} 2 E_{l}} B^{I}(s, q, l) \tau(\sigma(l)) T(s, l, p) \\
& \operatorname{Im} B^{I}=0\left(0<q^{\prime \prime}<P\right) \quad \operatorname{Im} B^{I I} \rightarrow 2 d\left(s, q, q^{\prime \prime}\right) \\
& \tilde{\Gamma}_{L^{\prime}}(s, q)= \\
& \quad-2 \int_{0}^{P(q)} \frac{d q^{\prime \prime}\left(q^{\prime \prime}\right)^{2}}{(2 \pi)^{3} 2 E_{q^{\prime \prime}}} d_{L^{\prime} L}\left(s, q, q^{\prime \prime}\right) \tau_{L}\left(\sigma\left(q^{\prime \prime}\right)\right)\left(\tilde{\Gamma}_{L}\left(s, q^{\prime \prime}\right)+D_{L}\left(s, q^{\prime \prime}\right)\right) \\
& \quad+\int_{\Gamma} \frac{d l l^{2}}{(2 \pi)^{3} 2 E_{l}}\left(B_{L^{\prime} L}^{I I \rightarrow I}(s, q, l)+C_{L^{\prime} L}(s, q, l)\right) \tau_{L}(\sigma(l))\left(\tilde{\Gamma}_{L}(s, l)+D_{L}(s, l)\right)
\end{aligned}
$$

$$
D_{L}(s, p)=D_{f L}(s, p) B_{L}(\lambda p)
$$

3. Blatt-Weisskopf barrier-penetration factors

For $\ell=0, \ldots, 5$ the Blatt-Weisskopf barrier-penetration factors [167, 168] are explicitly given by

$$
\begin{aligned}
& B_{0}(r)=1 \\
& B_{1}(r)=r / \sqrt{1+r^{2}}, \\
& B_{2}(r)=r^{2} / \sqrt{9+3 r^{2}+r^{4}}, \\
& B_{3}(r)=r^{3} / \sqrt{225+45 r^{2}+6 r^{4}+r^{6}}, \\
& B_{4}(r)=r^{4} / \sqrt{11025+1575 r^{2}+135 r^{4}+10 r^{6}+r^{8}}, \\
& B_{5}(r)=r^{5} / \sqrt{893025+99225 r^{2}+6300 r^{4}+315 r^{6}+15 r^{8}+r^{10}}
\end{aligned}
$$

Spectator momentum

$\Rightarrow \boldsymbol{p}=2 \pi \boldsymbol{n} / L$ for $\boldsymbol{n} \in \mathbb{Z}^{3}$
Spectator momentum shells

e.g. Shell 2: we have 2*3 =6 plane-wave momenta:
$(1,0,0),(1,0,0),(0,1,0)$, $(0,1,0),(0,1,0),(0,0,1)$, (0,0,-1)

- 1:\{0,0,0\}
- $2:\{1,0,0\}$
- $3:\{1,1,0\}$
- 4:\{1,1,1\}
- $5:\{2,0,0\}$
- 6:\{2,1,0\} $\frac{2 \pi}{L}$:

for the non-crictical and

$$
\begin{aligned}
\tilde{\Gamma}_{L^{\prime}}(s, q)= & -2 \int_{0}^{P(q)} \frac{d q^{\prime \prime}\left(q^{\prime \prime}\right)^{2}}{(2 \pi)^{3} 2 E_{q^{\prime \prime}}} d_{L^{\prime} L}\left(s, q, q^{\prime \prime}\right) \tau_{L}\left(\sigma\left(q^{\prime \prime}\right)\right)\left(\tilde{\Gamma}_{L}\left(s, q^{\prime \prime}\right)+D_{L}\left(s, q^{\prime \prime}\right)\right) \\
& +\int_{\Gamma} \frac{d l l^{2}}{(2 \pi)^{3} 2 E_{l}}\left(B_{L^{\prime} L}^{I I \rightarrow I}(s, q, l)+C_{L^{\prime} L}(s, q, l)\right) \tau_{L}(\sigma(l))\left(\tilde{\Gamma}_{L}(s, l)+D_{L}(s, l)\right)
\end{aligned}
$$

for the critical region.

