

Progress in Coupled-Channel Three-Pion Scattering for (In)Finite volume

Yuchuan Feng fengyuchuan@gwu.edu May 30th 2024

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Outline

3-Body Dynamics

- Confinement into colorneutral hadrons
- Mass generation of hadrons
- Resonances: key phenomena connecting QCD and experiment

Non-perturbative quark-gluon dynamics in QCD

Experiments

Decay mode	Resonance	${\mathcal B}$ (${\mathcal B}$ (%)	
Leptonic decays		35.2		
$ au^- ightarrow { m e}^- \overline{ u}_{ m e} u_ au$			17.8	
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$			17.4	
Hadronic decays		64.8		
$ au^- ightarrow \mathrm{h}^- u_ au$			11.5	
$ au^- ightarrow { m h}^- \pi^0 u_ au$	ho(770)		25.9	
$ au^- ightarrow { m h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$		9.5	
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	$a_1(1260)$		9.8	
$ au^- ightarrow \mathrm{h}^-\mathrm{h}^+\mathrm{h}^-\pi^0 u_ au$			4.8	
Other h[±] refers t	ns	3.3		

a1(1260) decay involves three-body dynamics

$$a_1(1260) \quad I^G(J^{PC}) = 1^-(1^{++})$$
[PDG]

ALEPH Detector

Kinematics

- = Isobar (Two stable particles interact)
- Spectator (The third particle)

Three-body Unitarity

"Conservation of probability"

$$SS^{\dagger} = \mathbb{1} \qquad \left[\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle \right] = \left[i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle \right]$$

 \widehat{T} : 3 \rightarrow 3 amplitude

Scattering Equation

$$\mathbf{T}\left|\left\langle q \left| T(s) \right| p \right\rangle = \left\langle q \left| B(s) \right| p \right\rangle + \left\langle q \left| C(s) \right| p \right\rangle + \int \frac{d^4k}{(2\pi)^4} \left\langle q \left| \left(B(s) + C(s) \right) \left| k \right\rangle \tau(\sigma(k)) \left\langle k \right| T(s) \left| p \right\rangle \right.\right\}\right.\right\}$$

• General Ansatz Bethe-Salpeter equation (BSE)

+

• Derive manifestly unitary amplitude (similar to Lippman-Schwinger equation (LSE))

+

7

Exchange:

- Complex
- Required by unitarity

Contact term:

• Does not destroy unitarity

+

• Free parametrization: fit to data

T

- Isobar-spectator Green's functions:
- 2-body scattering input 10

Partial-wave decomposition

 Plane-wave basis (Finite volume)

$$\begin{aligned} T_{\lambda'\lambda}(p,q_1) &= (B_{\lambda'\lambda}(p,q_1) + C) + \\ \sum_{\lambda''} \int \frac{d^3l}{(2\pi)^3 2E_l} \left(B_{\lambda'\lambda''}(p,l) + C \right) \tau(\sigma(l)) T_{\lambda''\lambda}(l,q_1) \end{aligned}$$

• *JLS* basis: (Infinite volume)

$$\begin{pmatrix} T_{LL'}^{J}(q_1, p) = \left(B_{LL'}^{J}(q_1, p) + C_{LL'}(q_1, p)\right) + \\ \int_{0}^{\Lambda} \frac{\mathrm{d}l\,l^2}{(2\pi)^3 2E_l} \left(B_{LL''}^{J}(q_1, l) + C_{LL''}(q_1, l)\right) \tau(\sigma(l)) T_{L''L'}^{J}(l, p)$$

Upgrade to 4-channel model

$\Gamma(~a_1(1260) ightarrow$ ($ ho\pi$) $_{S-\mathrm{wave}}$, $ ho o \pi\pi$ $)/\Gamma_{ m total}$					
$\lambda = 1 + \frac{1}{2}$				TECH	601111E		
<i>VALUE</i> (10 ⁻²)	EVIS	EVIS DOCUMENTID TECN COMMENT • We do not use the following data for averages fits limits etc. • •					
60.19	37k	¹ ASNER	2000	CLE2	10.6 $e^+ \ e^- ightarrow au^+ au^-$, $ au^- ightarrow \pi^0 \pi^0 u_ au$		

Old: isobar in *P*-wave [Sadasivan 2021 PRD]

New: isobars in S-wave

- σ : $f_0(500)$; $(\pi\pi)_2$: repulsive isospin I=2 channel
- Systematic inclusion of all possible isobars up to P-wave
- More channels will be included

To Finite Volume

LQCD: Quantization Condition (QC)

• Impose periodic Boundary Condition (Lattice)

Results

 $T = (B + C) + (B + C)\tau T$ $T = \frac{B + C}{\mathbb{1} - (B + C)\tau}$

Quantization Condition (QC) $0 = \det \left[B(s) + C(s) - E_L \left(\tilde{K}_2^{-1}(s) - \Sigma_2^L(s) \right) \right]_{\substack{(\lambda'\lambda) \\ (p'p)}}$ fit parameters

Generalization of QC to 4-channels achieved, All isobars up to *P*-wave are included: $a_1 \leftrightarrow (\pi\rho)_S \leftrightarrow (\pi\rho)_D \leftrightarrow (\pi\sigma)_P \leftrightarrow (\pi(\pi\pi)_{S,I=2})$ Analysis is on the way [YF et al., in preparation]

First extraction 3-body resonance from lattice QCD (2 channels)

 $a_1(1260)
ightarrow \pi
ho$ [Mai et al., PRL 2021]

• Extension to $\eta\pi\pi + K\bar{K}\pi$ in finite volume: [Z. Draper, S. Sharpe 2403.20064 [hep-ph]]

To Infinite Volume

GW

Production amplitude

Dalitz plots

- CLEO data [<u>Phys.Rev.D 61 (2000) 012002</u>]
- Channel dynamics mostly visible in Dalitz plots, not line shape
- Large data set for τ Dalitz decays
- Need more channels for combined analysis of Dalitz plots.
- Analyze future data with different final states $\pi\pi\pi/\pi K\bar{K}$

FIG. 5. Dalitz plot distributions for data and fit result. Here s_1 is taken to be the higher of the two values of $M^2_{\pi^-\pi^0}$ in each event. Bins 1 through 8 correspond to slices in $\sqrt{s} = 0.6$ -0.9, 0.9-1.0, 1.0-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-1.8 GeV.

Logarithmic Singularities

$$B_{\lambda'\lambda}(p',p) = 2\pi \int_{-1}^{+1} dx \, d^J_{\lambda'\lambda}(x) B_{\lambda'\lambda}(p',p)$$
$$B_{L'L}(p',p) = U_{L'\lambda'} B_{\lambda'\lambda}(p',p) U_{\lambda L}$$

Projection: Plane-wave \rightarrow Partial-wave

Projection: Helicity \rightarrow JLS

See also [Jackura Phys.Rev.D 109 (2024)]

Solving scattering equation for complex momenta

$$f(p', p) = \frac{1}{\sqrt{s} - E_p - E_{p'} - E_{p+p'} + ie}$$

Avoid vanishing denominator at

GW

Critical Region

Heatherington and Schick method

The Quantum Mechanical Three-Body Problem

Vieweg Tracts in Pure and Applied Physics

1st Edition - January 1, 1974 Authors: Erich W. Schmid, Horst Zieģelmann Editor: H. Stumpf • Language: English eBook ISBN: 9781483160788

Heatherington and Schick method

$$\boldsymbol{B} \sim f(\boldsymbol{p}',\boldsymbol{p}) = \frac{1}{\sqrt{s} - E_p - E_{p'} - E_{p+p'} + i\epsilon} \qquad B_{\lambda'\lambda}(p',p) = 2\pi \int_{-1}^{+1} dx \, d_{\lambda'\lambda}^J(x) B_{\lambda'\lambda}(p',p)$$

3D plot: Integrate over the angle

 $\sqrt{s} = 7.6m_{\pi}, q = 3.4m_{\pi}$

Preliminary results

[YF, F. Gil, M. Doering, R. Molina, M. Mai, V. Shastry, A. Szczepaniak]

Lineshape Modification

Extension to strangeness

2-body input

More 2-body inputs:

 $\delta^{00}_{K\bar{K}\to\pi\pi}$ n^{00}

Find data resources from [Doering JHEP 01 (2012) 009]

Prelim results 2

Production amplitude (strangeness): Only the (non-trivial) re-scattering piece Without final isobar decay

Summary and outlook

32

- Finite volume: Four-channel quantization condition allows for better determination of a₁ amplitude and other spins/isospins (in progress).
- Infinite volume:
 - \odot Quantify line-shape modification and phase motion induced by three-body effects beyond traditional isobar model
 - Inclusion of kaons (+eta) will allow to analyze different final states (help needed!)
 - \circ Allows for consistent inclusion of triangles as coupled-channel transition ($a_1(1420)$)
 - Can some resonances be generated by nonlinear meson dynamics from three-body unitarity?

For questions

Delta00

$$S = \begin{bmatrix} \eta e^{2i\delta_1} & i(1-\eta^2)^{1/2} e^{i(\delta_1+\delta_2)} \\ i(1-\eta^2)^{1/2} e^{i(\delta_1+\delta_2)} & \eta e^{2i\delta_2} \end{bmatrix}$$

GW

$$\begin{split} \left[\tilde{C}(s)\right]_{(p',j)(p,i)} = &\frac{3}{4\pi} \sum_{M=-1}^{1} \mathfrak{D}_{-M-\lambda(j)}^{1*}(\phi_{-p'},\theta_{-p'},0)\tilde{C}_{ji}(s,p',p)\mathfrak{D}_{-M-\lambda(i)}^{1}(\phi_{-p},\theta_{-p},0) \\ & \text{with} \quad \tilde{C}_{ji}(s,p',p) = U_{jL'}\tilde{C}_{L'L}(s,p',p)U_{Li} \quad \text{for} \quad U_{Lj} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0\\ 0 & 0 & 0 & 1\\ \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} & 0 \end{pmatrix}_{Lj} \\ & \text{with} \quad \tilde{C}_{L'L}(s,p',p) = \sum_{i=0}^{\infty} (p')^{L'} \cdot \tilde{c}_{L'L}^{(i)}(s)^{i} \cdot (p)^{L} \,. \end{split}$$

Extrapolation to real momenta

Finite volume 2-body input

$$\Sigma_{n,\lambda'\lambda}^{L}(s,\boldsymbol{p}) = \frac{J(\boldsymbol{p})}{L^{3}} \sum_{\boldsymbol{k}\in\mathcal{S}_{L}} \frac{\sigma_{p}^{n}}{(4E_{k^{\star}}^{2})^{n}} \frac{\epsilon_{\lambda'}^{\star\nu*}(\boldsymbol{P}_{3}-\boldsymbol{p})(P_{\nu}^{\star}-p_{\nu}^{\star}-2k_{\nu}^{\star})\epsilon_{\lambda}^{\star\mu}(\boldsymbol{P}_{3}-\boldsymbol{p})(P_{\mu}^{\star}-p_{\mu}^{\star}-2k_{\mu}^{\star})}{2E_{k^{\star}}(\sigma_{p}-4E_{k^{\star}}^{2})}$$

$$\boldsymbol{k}^{\star}(s,\boldsymbol{k},\boldsymbol{p}) = \boldsymbol{k} + \boldsymbol{p}\left(\frac{\boldsymbol{k}\cdot\boldsymbol{p}}{\boldsymbol{p}^2}\left(J(s,\boldsymbol{p})-1\right) + \frac{1}{2}J(s,\boldsymbol{p})\right), \quad J(s,\boldsymbol{p}) = \frac{\sqrt{\sigma_p}}{\sqrt{s}-E_p},$$

$$\tau_{\lambda'\lambda}^{-1}(\sigma_p) = \delta_{\lambda'\lambda} \tilde{K}_n^{-1}(s, \boldsymbol{p}) - \Sigma_{n,\lambda'\lambda}(s, \boldsymbol{p}) , \qquad (4)$$
$$\tilde{K}_n^{-1}(s, \boldsymbol{p}) = \sum_{i=0}^{n-1} a_i \sigma_p^i \quad \text{and} \quad \Sigma_{n,\lambda'\lambda}(s, \boldsymbol{p}) =$$
$$\int \frac{d^3k}{(2\pi)^3} \frac{\sigma_p^n}{(4E_k^2)^n} \frac{\hat{v}_{\lambda'}^*(P-p-k,k)\hat{v}_{\lambda}(P-p-k,k)}{2E_k(\sigma_p-4E_k^2+i\epsilon)} .$$

[Mai:2021nul]

GW

LQCD DATA

Table I. Details of the GWQCD $N_f = 2$ ensemble parameters used in this work. Here *a* is the lattice spacing, N_{cfg} the number of Monte-Carlo configurations for each ensemble. The pion and kaon masses are aM_{π} and aM_K , respectively. The errors on every value are purely stochastic except the lattice spacing which includes an estimated 2% systematic uncertainty.

Ensemble	$N_t \times N^3$	$a/{ m fm}$	$N_{ m cfg}$	aM_{π}	af_{π}	aM_K	af_K
2448	48×24^3	0.1210(2)(24)	300	0.1931(4)	0.0648(8)	0.3236(3)	0.1015(2)
2464	64×24^3	0.1215(3)(24)	400	0.1378(6)	0.0600(10)	0.3132(3)	0.0980(2)

Heatherington and Schick method

$D_L(s,p) = D_{fL}(s,p)B_L(\lambda p)$

3. Blatt-Weisskopf barrier-penetration factors

For $\ell = 0, ..., 5$ the Blatt-Weisskopf barrier-penetration factors [167, 168] are explicitly given by

$$\begin{split} B_0(r) &= 1 \,, \\ B_1(r) &= r/\sqrt{1+r^2} \,, \\ B_2(r) &= r^2/\sqrt{9+3r^2+r^4} \,, \\ B_3(r) &= r^3/\sqrt{225+45r^2+6r^4+r^6} \,, \\ B_4(r) &= r^4/\sqrt{11025+1575r^2+135r^4+10r^6+r^8} \,, \\ B_5(r) &= r^5/\sqrt{893025+99225r^2+6300r^4+315r^6+15r^8+r^{10}} \,. \end{split}$$

Spectator momentum

 $\Rightarrow \boldsymbol{p} = 2\pi \boldsymbol{n}/L \text{ for } \boldsymbol{n} \in \mathbb{Z}^3$

Spectator momentum shells

• 1:{0,0,0}

- 2:{1,0,0}
- 3:{1,1,0}

4:{1,1,1}

5:{2,0,0}

$$\{2,1,0\}$$
 $\frac{2\pi}{L}$

e.g. Shell 2: we have 2*3 =6 plane-wave momenta: (1,0,0), (1,0,0),(0,1,0), (0,1,0), (0,1,0), (0,0,1), (0,0,-1)

for the non-crictical and

$$\tilde{\Gamma}_{L'}(s,q) = -2 \int_{0}^{P(q)} \frac{dq''(q'')^2}{(2\pi)^3 2E_{q''}} d_{L'L}(s,q,q'') \tau_L(\sigma(q'')) \left(\tilde{\Gamma}_L(s,q'') + D_L(s,q'')\right) + \int_{\Gamma} \frac{dl \, l^2}{(2\pi)^3 \, 2E_l} \left(B_{L'L}^{II \to I}(s,q,l) + C_{L'L}(s,q,l)\right) \tau_L(\sigma(l)) \left(\tilde{\Gamma}_L(s,l) + D_L(s,l)\right)$$

for the critical region.