decayangle a Tool for Wigner Rotations

Kai Habermann¹, Mikhail Mikhasenko²

¹University of Bonn ² Ruhr University Bochum

The Isobar Model in Helicity Formalism Three-body decay as consecutive two-body decays

- Three distinct *topologies* for three-body case
- Strong interaction
 - \rightarrow quick decay preserves coherence
 - \rightarrow decays via different Isobars can not be separated

Kai Habermann

7/17

Kai Habermann

Relevant only for final state particles with spin!

Full transformation into rest frame of 3 for topology *c*:
 Λ(0 → 3)^c

 Helicity of particle 3 is defined in particle 3 rest

frame

$$\Lambda_{\rm rot} = \Lambda(0 \to 3)^2 \left(\Lambda(0 \to 3)^1\right)^{-1}$$

Decoding of Angles

Decode rotation angles and boost

Kai Habermann

$\Lambda = R_z(\phi)R_y(\theta)B_z(\xi)R_z(\phi_{\rm RF})R_y(\theta_{\rm RF})R_z(\psi_{\rm RF})$

$\Lambda_{\rm rf}$ is pure rotation

 \rightarrow decoding $\theta_{\rm RF}, \phi_{\rm RF}, \psi_{\rm RF}$ via independent matrix entries

 $\Lambda^{2,2}(\theta,\phi,\xi,\phi_{\rm rf},\theta_{\rm rf},\psi_{\rm rf}) = -\Lambda^{2,2}_{\rm orig}$ $\Rightarrow \phi_{\rm rf} \rightarrow \phi_{\rm rf} + 2\pi$

<u>decayangle</u> Software Framework

Full computation of helicity angles and relative final state rotations

Topologies

Kai Habermann

Generate via binary mask operation

Represent next layer as number with one bit per constituent
 Binary representation i.e. (101) used as mask
 1 at position m

 > constituent m goes left
 0 at position m
 > constituent m goes left right
 2 3

 Recurse till only one constituent

<u>decayangle</u> Topologies

The basic way to create and filter for the processes of interest

Filter	<pre>tg = TopologyCollection(0, [1,2 topologies = tg.filter((2, 1)) for topology in topologies: print(topology)</pre>
	Topology: (0 -> ((1, 2) -> 1, Topology: (0 -> ((1, 2, 4) -> Topology: (0 -> ((1, 2, 3) ->

<u>decayangle</u> Topologies

Kai Habermann

Create the topologies directly by defining the order of decays

A lot of work and room for error in case of more complicated decays!

<u>decayangle</u> Angles

The computation of helicity angles and final state rotations

topology = topologies[0]

`momenta` is a dict of particle momenta with
- key: the final-state particle number
- value: np.ndarray or jax.numpy.ndarray with shape
(..., 4)
angles = topology.helicity_angles(momenta)

```
reference = topologies[0]
other = topologies[1]
```

relative_angles = reference.relative_wigner_angles(other, momenta)

Node Ordering

Kai Habermann

Effects of particle ordering

- $\theta_{1,2} = \pi \theta_{2,1}$
 - Ordering can have effect on angles
- decayangle orders by value of node as default
- Ordering can be turned off
 - Warning: generated topologies may have hard to predict ordering, without explicit scheme!

Ordering from <u>Dalitz-plot decomposition</u> M. Mikhasenko et. Al.

Conclusion

- <u>decayangle</u> offers a easy-to-use solution to acquire all needed angles for an amplitude analysis
- Further support for selection of the desired decay chains is provided
 Approach of combined representations ensures correctness for all spin-carrying
- Approach of combined representations particles
- Extensive testing against analytic definition of angles
 - Dalitz Plot Decomposition
 - $\Lambda_c \rightarrow pK\pi$ aligned kinematics
 - General ability to reconstruct any set of angles and rapidities
- Available on PyPi:

pypi v1.0.2 python 3.8 | 3.9 | 3.10 | 3.11 | 3.12

Conclusion

- <u>decayangle</u> offers a easy-to-use solution to acquire all needed angles for an amplitude analysis
- Further support for selection of the desired decay chains is provided
- particles
- Extensive testing against analytic definition of angles
 - Dalitz Plot Decomposition
 - $\Lambda_c \rightarrow pK\pi$ aligned kinematics
 - General ability to reconstruct any set of angles and rapidities
- Available on PyPi:

v1.0.2

• Approach of combined representations ensures correctness for all spin-carrying

- Aligned kinematics can be used to generate phase space points from angles ϕ_{rf} and ψ_{rf}
- Discontinuity can be seen nicely
- On the left:
 - $\psi_{rf} + \phi_{rf}$ from the relative Wigner rotation between the topology $0 \rightarrow (12 \rightarrow 1 \ 2) \ 3$ labeled with index 3 and
 - $0 \rightarrow (23 \rightarrow 23)$ 1 labeled with index 1
 - ϕ_{rf} and ψ_{rf} are as found in topology $0 \rightarrow (23 \rightarrow 23) 1$

Further Exploration

