The Jülich-Bonn dynamical coupled-channel approach

29th May, 2024 | Christian Schneider | Institute for Advanced Simulation, Forschungszentrum Jülich

Supervisor: D. Rönchen, C. Hanhart

Supported by MKW NRW (Network NRW FAIR)
HPC support by Jülich Supercomputing Centre

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime
Theoretical predictions of excited hadrons

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:

- In the past: πN-scattering \rightarrow "missing resonance problem"
- In recent years: photoproduction reactions \rightarrow enlarged data base with high quality (double) polarization observables
- In the future: electroproduction reactions

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI
Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000
\Rightarrow search for resonances/excited states in those partial waves: poles on the unphysical Riemann sheet

The Jülich-Bonn DCC approach for N^{*} and Δ^{*}

 pion-induced reactionsDynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{I J}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{I J}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{I J}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{I J}|L S p\rangle
\end{aligned}
$$

- $\pi \pi N$ through effective channels $(\pi \Delta, \sigma N, \rho N)$
$\Rightarrow 2$ body unitarity and analyticity respected

The Jülich-Bonn DCC approach for N^{*} and Δ^{*}

 pion-induced reactionsDynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{I J}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{I J}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2} \quad\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{I J}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{I J}|L S p\rangle
\end{aligned}
$$

Photoproduction in a semi-phenomenological approach

Multipole amplitude

$$
M_{\mu \gamma}^{I J}=V_{\mu \gamma}^{I J}+\sum_{\kappa} T_{\mu \kappa}^{I J} G_{\kappa} V_{\kappa \gamma}^{I J}
$$

(partial wave basis)

$T_{\mu \kappa}$: full hadronic T-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
=\frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} P_{\mu}^{\mathrm{NP}}(E)+\sum_{i} \frac{\gamma_{\mu ; i}^{a}(q) P_{i}^{\mathrm{P}}(E)}{E-m_{i}^{b}}
$$

Simultaneous fit of pion- \& photon-induced reactions

Free parameters

$\pi N \rightarrow \pi N, \eta N, K Y:$ s-channel: resonances $\left(T^{P}\right)$

$$
m_{\text {bare }}+f_{m B N^{*}}
$$ s-channel parameters

- couplings in contact terms: one per PW, couplings to $\pi N, \eta N, \pi \Delta, K \Lambda, K \Sigma$

■ t - \& u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies
(couplings fixed from $\operatorname{SU}(3)$)
$\Rightarrow \quad>900$ fit parameters in total

- large number of fit parameters, many from polynomials
- can be regarded as advantage: prevents the inclusion of superfluous s-channel states to improve fit
- χ^{2}-minimization using Minuit on a supercomputer [JURECA, JSC, Journal of large-scale research facilities, 2, A62 (2016)]

Two potential formalism

$$
T_{\mu \nu}=T_{\mu \nu}^{P}+T_{\mu \nu}^{N P} \quad V_{\mu \nu}=V_{\mu \nu}^{P}+V_{\mu \nu}^{N P}
$$

- Non pole part ("background"): $V_{\mu \nu}^{N P} \sim \mathrm{t}$ - and u-channels

$$
T_{\mu \nu}^{N P}=V_{\mu \nu}^{N P}+\sum_{\kappa} V_{\mu \kappa}^{N P} G_{\kappa} T_{\kappa \nu}^{N P} \quad \text { (numerically demanding) }
$$

- Pole part (resonances): s-channels

$$
\begin{aligned}
V_{\mu \nu}^{P} & =\frac{\gamma_{\mu}^{a} \gamma_{\nu}^{c}}{z-m_{b}} \quad \gamma_{\mu}^{a, c} \sim \text { bare annihilation/creation vertex, } m_{b} \sim \text { bare mass } \\
T_{\mu \nu}^{P} & =\frac{\Gamma_{\mu}^{a} \Gamma_{\nu}^{c}}{z-m_{b}-\Sigma} \Rightarrow T^{P} \text { evaluated from } T^{N P}
\end{aligned}
$$

with dressed vertices $\Gamma_{\mu}^{c}=\gamma_{\mu}^{c}+\sum_{\nu} \gamma_{\nu}^{c} G_{\nu} T_{\nu \mu}^{N P}, \Gamma_{\mu}^{a}=\gamma_{\mu}^{a}+\sum_{\nu} T_{\mu \nu}^{N P} G_{\nu} \gamma_{\nu}^{a}$ and self-energy $\Sigma=\sum_{\mu} \gamma_{\mu}^{c} G_{\mu} \Gamma_{\mu}^{a}$,

- Set of "fast" parameters in T^{P} optimized for each step in "slow" parameters \rightarrow "Nested" fit strategy

JüBo2024: Data base

Recent updates to JüBo I

- Double polarization observable \mathbb{G} for $\vec{\gamma} \vec{p} \rightarrow \pi^{0} p$ and $\vec{\gamma} \vec{p} \rightarrow \pi^{+} n$ [CLAS, Phys. Lett. B817 (2021) 136304] (blue: 2022, red: 2024)

Recent updates to JüBo II

preliminary

- $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ and Σ for $\vec{\gamma} p \rightarrow \eta p_{[\text {LLEPS, Phys. Rev, C } 106 \text { (2022) 3, } 035201]}$
(blue: 2022, red: 2024)

Recent updates to JüBo III

preliminary

- Double-spin-polarization observable \mathbb{E} for $\vec{\gamma} \vec{p} \rightarrow \pi^{0} p_{\text {[CLAS, Eur.Phys.J.A 59 (2023) 9, 217] }}$ (blue: 2022, red: 2024)

Change of Pole Positions

$N(1710) 1 / 2^{+}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1586.8	107.6	2.8	-108.0
2022	1605 ± 14	115 ± 9	5.5 ± 4.7	-114 ± 57
PDG 2024	1700 ± 50	120 ± 40	7 ± 3	190 ± 70

$N(1520) 3 / 2^{-}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1496.3	100.4	24.4	-18.2
2022	1482 ± 6	126 ± 18	27 ± 21	-36 ± 48
PDG 2024	1510 ± 5	112.5 ± 7.5	35 ± 3	-10 ± 5

$\Delta(1600) 3 / 2^{+}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1592.8	84.2	9.7	-114.4
2022	1590 ± 1	136 ± 1	11 ± 1	-106 ± 2
PDG 2024	1520 ± 50	280 ± 40	25 ± 15	210 ± 30

$\Delta(1700) 3 / 2^{-}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1680.3	360.2	38.0	-6.2
2022	1637 ± 64	295 ± 58	15 ± 23	-13 ± 147
PDG 2024	1665 ± 25	250 ± 50	25 ± 15	-20 ± 20

$N(1900) 3 / 2^{+}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1903.5	141	1.07	-95.9
2022	1905 ± 3	93 ± 4	1.6 ± 0.3	44 ± 21
PDG 2024	1920 ± 20	130 ± 40	4 ± 2	-10 ± 30

$N(1720) 3 / 2^{+}$ $* * * *$	$\operatorname{Re} E_{0}$ $[\mathrm{MeV}]$	$-2 \operatorname{lm} E_{0}$ $[\mathrm{MeV}]$	$\|r\|_{\pi N \rightarrow \pi N}$ $[\mathrm{MeV}]$	$\theta_{\pi N \rightarrow \pi N}$ $[\mathrm{deg}]$
2024	1698.5	132.7	9.7	-8.2
2022	1726 ± 8	185 ± 12	15 ± 2	-60 ± 5
PDG 2024	1680 ± 20	200 ± 50	15 ± 5	-110 ± 50

GDH sum rule

- Photoproduction process $\gamma N \rightarrow X$ can be characterized in terms of integrals of cross-sections
- For circularly polarized photons on longitudinally polarized nucleons either $\Delta \sigma=\sigma_{3 / 2}-\sigma_{1 / 2}$ or $\sigma_{t o t}=\sigma_{3 / 2}+\sigma_{1 / 2}$

$$
\begin{aligned}
& \text { Gerasimov Drell Hearn (GDH) sum rule } \\
& \qquad \begin{aligned}
& I_{G D H}=\int_{E_{\gamma}^{t h r}}^{\infty} \frac{\Delta \sigma}{E_{\gamma}} \mathrm{d} E_{\gamma}=\frac{2 \pi^{2} \alpha}{M^{2}} \kappa^{2} \begin{array}{l}
\alpha=\frac{e_{0}^{2}}{4 \pi} \\
E_{\gamma}^{t h r} \sim \text { pion photoproduction } \\
\text { threshold, }
\end{array} \\
& M \sim \text { nucleon mass, } \\
& \text { Ann. Rev. Nucl. Part. Sci. 54, 69 (2004). } \kappa_{p}=\mu_{p}-1, \kappa_{n}=\mu_{n}
\end{aligned}
\end{aligned}
$$

- Values for photoproduction on p or n targets: [1. Strakovsky et al. Phys.Rev.C 105 (2022) 4, 045202]

$$
\begin{aligned}
I_{G D H, p} & =204.784482(35) \mu \mathrm{b} \\
I_{G D H, n} & =232.25159(13) \mu \mathrm{b}
\end{aligned}
$$

GDH sum rule - JüBo

- From JüBo 2024 fits for $\gamma p \rightarrow X$

$$
I_{G D H}=\int_{E_{\gamma}^{t h r}}^{E_{\gamma}} \frac{\Delta \sigma}{E_{\gamma}^{\prime}} \mathrm{d} E_{\gamma}^{\prime}, \quad E_{\gamma}: \text { Upper integration limit }
$$

- $\pi^{0} p$ main contribution, followed by $\pi^{+} n$
- ηp mainly negative
- missing contribution expected from 2π-channels

Comparison of different channels to the GDH-sum

Summary

Jülich-Bonn DCC model:

- Extraction of the N^{*} and Δ^{*} spectrum in a simultaneous analysis of pion- and photon-induced reactions:
- $\pi N \rightarrow \pi N, \eta N, K \Lambda$ and $K \Sigma$
lagrangian based description, unitarity \& analyticity respected
- $\gamma N \rightarrow \pi N, \eta N, K \Lambda$ and $K \Sigma$ in a semi-phenomenological approach hadronic final state interaction: JüBo DCC analysis
\rightarrow analysis of $\sim 73,000$ data points
- New data sets and preliminary fit updates 2024
- GDH sum rule contribution of different channels

Outlook:

- Include $\gamma n \rightarrow X$ and calculate GDH sum rule for these processes
- Simultaneous fit of pion-, photon-induced and electroproduction data.

Appendix

GDH sum rule - JuBo Δ_{31}

GDH sum rule - JuBo Δ_{31}

preliminary

GDH sum rule - JuBo Δ_{31}

GDH sum rule - JuBo Δ_{31}

preliminary

Electroproduction of pseudoscalar mesons

Construction of the multipole amplitude $M_{\mu \gamma}^{I J}$

Different approaches

- Field theoretical approaches : DMT, ANL-Osaka, Jülich-Athens-Washington, ...

Example: Gauge invariant formulation by Haberzettl, Huang and Nakayama

> Phys. Rev. C56 (1997), Phys. Rrev. C74 (2006), Phys. Rev. C85 (2012)

- satisfies the generalized off-shell Ward-Takahashi identity
- earlier version of the Jülich-Bonn model as FSI

Photoproduction amplitude:

$$
+\underbrace{M_{i n t}^{\mu}}
$$

coupling inside hadronic vertex

by phenomenological contact term such that the
Strategy: Replace
 generalized WTI is satisfied

Details of the formalism

Polynomials:

$$
\begin{aligned}
P_{i}^{\mathrm{P}}(E) & =\sum_{j=1}^{n} g_{i, j}^{\mathrm{P}}\left(\frac{E-E_{0}}{m_{N}}\right)^{j} e^{-g_{i, n+1}^{P}\left(E-E_{0}\right)} \\
P_{\mu}^{\mathrm{NP}}(E) & =\sum_{j=0}^{n} g_{\mu, j}^{\mathrm{NP}}\left(\frac{E-E_{0}}{m_{N}}\right)^{j} e^{-g_{\mu, n+1}^{\mathrm{NP}}\left(E-E_{0}\right)}
\end{aligned}
$$

- $E_{0}=1077 \mathrm{MeV}$
- $g_{i, j}^{\mathrm{P}}, g_{\mu, j}^{\mathrm{NP}}:$ fit parameter
- $e^{-g\left(E-E_{0}\right)}:$ appropriate high energy behavior
$-n=3$

Construction of the potential V : phenomenological vs fieldtheoretical

Phenomenological

- implementation easier (e.g. polynomials)
- numerically advantageous

Fieldtheoretical

- development based on \mathcal{L} complicated, numerically demanding
- information on the dynamical content
- in case of incomplete data base: model constrained by well-established physics
\rightarrow minimize uncertainties due to lack of complete data / high-quality data
- 3-body unitarity requires discontinuities from t-channel ex. simultaneously with discontinuities from s-channels
\rightarrow meson ex. arises naturally from requirements of the S-matrix
- make predictions
... depends on your goal and your resources (data, computing power)

The scattering potential: s-channel resonances

- i : resonance number per PW

$$
V^{\mathrm{P}}=\sum_{i=0}^{n} \frac{\gamma_{\mu ; i}^{a} \gamma_{\nu ; i}^{c}}{z-m_{i}^{b}}
$$

- $\gamma_{\nu ; i}^{c}\left(\gamma_{\mu ; i}^{a}\right)$: creation (annihilation) vertex function with bare coupling f (free parameter)
- z : center-of-mass energy
- m_{i}^{b} : bare mass (free parameter)
- $J \leq 3 / 2$:
$\gamma_{\nu ; i}^{c}\left(\gamma_{\mu ; i}^{a}\right)$ from effective \mathcal{L}

Vertex	$\mathcal{L}_{\text {int }}$
$N^{*}\left(S_{11}\right) N \pi$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^{*}} \gamma^{\mu} \vec{\tau} \partial_{\mu} \vec{\pi} \Psi+$ h.c.
$N^{*}\left(S_{11}\right) N \eta$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^{*}} \gamma^{\mu} \partial_{\mu} \eta \Psi+$ h.c.
$N^{*}\left(S_{11}\right) N \rho$	$f \bar{\Psi}_{N^{*}} \gamma^{5} \gamma^{\mu} \vec{\tau} \vec{\rho}_{\mu} \Psi+$ h.c.
$N^{*}\left(S_{11}\right) \Delta \pi$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^{*}} \gamma^{5} \vec{S} \partial_{\mu} \vec{\pi} \Delta^{\mu}+$ h.c.

- $5 / 2 \leq J \leq 9 / 2$: correct dependence on L (centrifugal barrier)

$$
\begin{aligned}
& \left(\gamma^{a, c}\right)_{\frac{5}{2}}{ }^{-}=\frac{k}{M}\left(\gamma^{a, c}\right)_{\frac{3}{2}}{ }^{+} \\
& \left(\gamma^{a, c}\right)_{\frac{5}{2}}+=\frac{k}{M}\left(\gamma^{a, c}\right)_{\frac{3}{2}}- \\
& \left(\gamma^{a, c}\right)_{\frac{7}{2}-}=\frac{k^{2}}{M^{2}}\left(\gamma^{a, c}\right)_{\frac{3}{2}}- \\
& \left(\gamma^{a, c}\right)_{\frac{7}{2}}+=\frac{k^{2}}{M^{2}}\left(\gamma^{a, c}\right)_{\frac{3}{2}}+ \\
& \left(\gamma^{a, c}\right)_{\frac{9}{2}}-\quad=\frac{k^{3}}{M^{3}}\left(\gamma^{a, c}\right)_{\frac{3}{2}}+ \\
& \left(\gamma^{a, c}\right)_{\frac{9}{2}}+=\frac{k^{3}}{M^{3}}\left(\gamma^{a, c}\right)_{\frac{3}{2}}-
\end{aligned}
$$

The scattering potential: t - and u-channel exchanges

	$\pi \mathrm{N}$	$\rho \mathrm{N}$	$\eta \mathrm{N}$	$\pi \Delta$	$\sigma \mathrm{N}$	$\mathrm{K} \Lambda$	$\mathrm{K} \Sigma$
$\pi \mathrm{N}$	$\mathrm{N}, \Delta\left((\pi \pi)_{\sigma}\right.$, $(\pi \pi)_{\rho}$	$\mathrm{N}, \Delta, \mathrm{Ct}$, $\pi, \omega, \mathrm{a}_{1}$,	$\mathrm{N}, \mathrm{a}_{0}$	$\mathrm{~N}, \Delta, \rho$	$\mathrm{~N}, \pi$	$\Sigma, \Sigma^{*}, \mathrm{~K}^{*}$	$\Lambda, \Sigma^{2}, \Sigma^{*}$,
$\rho \mathrm{N}$		$\mathrm{N}, \Delta, \mathrm{Ct},. \rho$	-	N, π	-	-	-
$\eta \mathrm{N}$			$\mathrm{N}, \mathrm{f}_{0}$	-	-	K^{*}, Λ	$\Sigma, \Sigma^{*}, \mathrm{~K}^{*}$
$\pi \Delta$				$\mathrm{~N}, \Delta, \rho$	π	-	-
$\sigma \mathrm{N}$					N, σ	-	-
$\mathrm{K} \Lambda$						$\Xi, \Xi^{*}, \mathrm{f}_{0}$, ω, ϕ	Ξ, Ξ^{*}, ρ
$\mathrm{~K} \Sigma$							$\Xi, \Xi^{*}, \mathrm{f}_{0}$,

Free parameters: cutoffs Λ in the form factors: $F(q)=\left(\frac{\Lambda^{2}-m_{x}^{2}}{\Lambda^{2}+\vec{q}^{2}}\right)^{n}, n=1,2$

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U.-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

- consistent with the approximate (broken) chiral $S U(2) \times S U(2)$ symmetry of QCD

Vertex	$\mathcal{L}_{\text {int }}$	Vertex	$\mathcal{L}_{\text {int }}$
$N N \pi$	$-\frac{g_{N N \pi}}{m_{\pi}} \Psi \gamma^{5} \gamma^{\mu} \vec{\tau} \cdot \partial_{\mu} \vec{\pi} \Psi$	$N N \omega$	$-g_{N N \omega} \bar{\Psi}\left[\gamma^{\mu}-\frac{\kappa \omega}{2 m_{N}} \sigma^{\mu \nu} \partial_{\nu}\right] \omega_{\mu} \Psi$
$N \Delta \pi$	$\frac{g_{N \Delta \pi}}{m_{\pi}} \bar{\Delta}^{\mu} \vec{S}^{\dagger} \cdot \partial_{\mu} \vec{\pi} \Psi+$ h.c.	$\omega \pi \rho$	$\frac{g_{\omega \pi \rho}}{m_{\omega}} \epsilon_{\alpha \beta \mu \nu} \partial^{\alpha} \vec{\rho}^{\beta} \cdot \partial^{\mu} \vec{\pi} \omega^{\nu}$
$\rho \pi \pi$	$-g_{\rho \pi \pi}\left(\vec{\pi} \times \partial_{\mu} \vec{\pi}\right) \cdot \vec{\rho}^{\mu}$	$N \Delta \rho$	$-i \frac{g_{N \Delta \rho}}{m_{\rho}} \bar{\Delta}^{\mu} \gamma^{5} \gamma^{\mu} \vec{S}^{\dagger} \cdot \vec{\rho}_{\mu \nu} \Psi+$ h.c
$N N \rho$	$-g_{N N \rho} \Psi\left[\gamma^{\mu}-\frac{\kappa \rho}{2 m_{N}} \sigma^{\mu \nu} \partial_{\nu}\right] \vec{\tau} \cdot \vec{\rho}_{\mu} \Psi$	$\rho \rho \rho$	$g_{N N \rho}\left(\vec{\rho}_{\mu} \times \vec{\rho}_{\nu}\right) \cdot \vec{\rho}^{\mu \nu}$
$N N \sigma$	$-g_{N N \sigma} \bar{\Psi} \Psi \sigma$	$N N \rho \rho$	$\frac{\kappa_{\rho} g_{N N \rho}^{2}}{2 m_{N}} \bar{\Psi} \sigma^{\mu \nu} \vec{\tau} \Psi\left(\vec{\rho}_{\mu} \times \vec{\rho}_{\nu}\right)$
$\sigma \pi \pi$	$\frac{g_{\sigma \pi}}{2 m_{\pi}} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} \sigma$	$\Delta \Delta \pi$	$\frac{g_{\Delta \Delta t}}{m_{\pi}} \bar{\Delta}_{\mu} \gamma^{5} \gamma^{\nu} \vec{T} \Delta^{\mu} \partial_{\nu} \vec{\pi}$
$\sigma \sigma \sigma$	$-g_{\sigma \sigma \sigma} m_{\sigma} \sigma \sigma \sigma$	$\Delta \Delta \rho$	$\begin{aligned} & -g_{\Delta \Delta \rho} \bar{\Delta}_{\tau}\left(\gamma^{\mu}-i \frac{\kappa \Delta \Delta \rho}{2 m \Delta} \sigma^{\mu \nu} \partial_{\nu}\right) \\ & \quad \cdot \vec{\rho}_{\mu} \cdot \vec{T} \Delta^{\tau} \end{aligned}$
$N N \rho \pi$	$\frac{g_{N N \pi}}{m_{\pi}} 2 g_{N N \rho} \bar{\Psi} \gamma^{5} \gamma^{\mu} \vec{\tau} \Psi\left(\vec{\rho}_{\mu} \times \vec{\pi}\right)$	$N N \eta$	$-\frac{g_{N N \eta}}{m_{\pi}} \bar{\Psi} \gamma^{5} \gamma^{\mu} \partial_{\mu} \eta \Psi$
$N N a_{1}$	$-\frac{g_{N N \pi}}{m_{\pi}} m_{a_{1}} \bar{\Psi} \gamma^{5} \gamma^{\mu} \vec{\tau} \Psi \vec{a}_{\mu}$	$N N a_{0}$	$g_{N N a_{0}} m_{\pi} \bar{\Psi} \vec{\tau} \Psi \overrightarrow{a_{0}}$
$a_{1} \pi \rho$	$\begin{array}{r} -\frac{2 g \pi a_{1} \rho}{m_{a_{1}}}\left[\partial_{\mu} \vec{\pi} \times \vec{a}_{\nu}-\partial_{\nu} \vec{\pi} \times \vec{a}_{\mu}\right] \cdot\left[\partial^{\mu} \vec{\rho}^{\nu}-\partial^{\nu} \vec{\rho}^{\mu}\right] \\ \quad+\frac{2 g_{\pi a_{1} \rho} \rho}{2 m_{a_{1}}}\left[\vec{\pi} \times\left(\partial_{\mu} \vec{\rho}_{\nu}-\partial_{\nu} \vec{\rho}_{\mu}\right)\right] \cdot\left[\partial^{\mu} \vec{a}^{\nu}-\partial^{\nu} \vec{a}^{\mu}\right] \\ \hline \end{array}$	$\pi \eta a_{0}$	$g_{\pi \eta a_{0}} m_{\pi} \eta \vec{\pi} \cdot \vec{a}_{0}$

Thresholds of inelastic channels

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of inelastic channels \Rightarrow branch point and new Riemann sheet

3-body $\pi \pi N$ channel:

- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
\square branch points move into complex plane

Example: ρN branch point at

$$
M_{N}+m_{r h o}=1700 \pm i 75 \mathrm{MeV}
$$

Inclusion of branch points important to avoid false resonance signal!

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity: discontinuities from t-channel exchanges
\rightarrow Meson exchange from requirements of the S-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon u-channel exchange

$\vec{a}=\vec{p}_{1}-\vec{p}_{9}$

$\vec{a}=\vec{q}_{1}-\vec{p}_{4}$

$\vec{a}=\vec{p}_{1}+\vec{p}_{r}=0$

Inclusion of the $\pi N \rightarrow \omega N$ channel

Motivation

- Completion of the Jülich model (not far above the previously highest threshold $K \Sigma$)
\rightarrow refined analyses of the hadron spectra
- Preparation of the study of $\gamma N \rightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen etal. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Numerical fit

- 304 parameters (38 new), over 10000 data points (178 new)
- Two fit scenarios:
- fit A - non-pole parameters close to the previous solution
- fit B - non-pole parameters are changed more
- Selected fit results: Total cross section, backward/forward differential cross section

Further Improvements

- elastic $\pi \mathrm{N}$ channel: not data but GWU SAID PWA

Correlated χ^{2} fit

$$
\chi^{2}(A)=\chi^{2}(\hat{A})+(A-\hat{A})^{T} \hat{\Sigma}^{-1}(A-\hat{A})
$$

$A \sim$ vector of fitted PWs,
$\hat{A} \sim$ vector of SAID SE PWs

PRC 93, 065205 (2016)
\rightarrow same χ^{2} as fitting to data up to nonlinear order (included)
\rightarrow needed for error analysis

- "Missing resonance problem" \rightarrow What resonances are relevant?

Least Absolute Shrinkage and Selection Operator

$$
\chi_{T}^{2}=\chi^{2}+\lambda \sum_{i=1}^{i_{\max }}\left|a_{i}\right|
$$

$\lambda \sim$ penalty factor,
$a_{i} \sim$ fit parameter
[PRC 95, 015203 (2017); J. R. Stat. Soc. B 58, 267 (1996)]
\rightarrow LASSO to find minimal model
\rightarrow Numerically very demanding!

Reaction	Observables (\# data points)	p./channel
$\pi N \rightarrow \pi N$	PWA GW-SAID WIO8 (ED solution)	8,396
$\pi^{-} p \rightarrow \eta n$	$d \sigma / d \Omega(676), P(79)$	755
$\pi^{-} p \rightarrow K^{0} \Lambda$	$d \sigma / d \Omega(814), P(472), \beta$ (72)	1,358
$\pi^{-} p \rightarrow K^{0} \Sigma^{0}$	$d \sigma / d \Omega(470), P(120)$	590
$\pi^{-} p \rightarrow K^{+} \Sigma^{-}$	$d \sigma / d \Omega(150)$	150
$\pi^{+} p \rightarrow K^{+} \Sigma^{+}$	$d \sigma / d \Omega(1124), P(551), \beta(7)$	1,682
$\gamma p \rightarrow \pi^{0} p$	$d \sigma / d \Omega(18721), \Sigma(3287), P(768), T(1404), \Delta \sigma_{31}(140)$,	
	$G(393), H(225), E(1227), F(397), C_{x_{\mathrm{L}}^{\prime}(74), C_{z_{\mathrm{L}}^{\prime}}(26)}$	26,662
$\gamma p \rightarrow \pi^{+} n$	$d \sigma / d \Omega(5670), \Sigma(1456), P(265), T(718), \Delta \sigma_{31}(231)$,	9,457
	$G(86), H(128), E(903)$	10,554
$\gamma p \rightarrow \eta p$	$d \sigma / d \Omega(9112), \Sigma(535), P(63), T(291), F(144)$,	
	$E(306), G(47), H(56)$	6,072
$\gamma p \rightarrow K^{+} \Lambda$	$d \sigma / d \Omega(2563), P(1663), \Sigma(459), T(383)$,	5,632
	$C_{x^{\prime}}(121), C_{z^{\prime}}(123), O_{x^{\prime}}(66), O_{z^{\prime}}(66), O_{x}(314), O_{z}(314)$,	448
$\gamma p \rightarrow K^{+} \Sigma^{0}$	$d \sigma / d \Omega(4381), P(402), \Sigma(280)$	71,756
	$T(127), C_{x^{\prime}}(94), C_{z^{\prime}}(94), O_{x}(127), O_{z}(127)$	in total

