The Jülich-Bonn dynamical coupled-channel approach

29th May, 2024 | Christian Schneider | Institute for Advanced Simulation, Forschungszentrum Jülich

Supervisor: D. Rönchen, C. Hanhart

Supported by MKW NRW (Network NRW FAIR) HPC support by Jülich Supercomputing Centre

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Theoretical predictions of excited hadrons

Major source of information:

- In the past: πN -scattering \rightarrow "missing resonance problem"
- In recent years: photoproduction reactions \rightarrow enlarged data base with high quality (double) polarization observables

Slide 1112

In the future: electroproduction reactions

Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA: data: ELSA, JLab, MAMI

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum; PDG 2000

⇒ search for resonances/excited states in those partial waves: poles on the unphysical Riemann sheet

 \Rightarrow Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total angular momentum and parity J^P

Slide 1112

The Jülich-Bonn DCC approach for N^* and Δ^*

pion-induced reactions

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

• $\pi\pi N$ through effective channels $(\pi\Delta, \sigma N, \rho N)$ \Rightarrow 2 body unitarity and analyticity respected

The Jülich-Bonn DCC approach for N^* and Δ^*

pion-induced reactions

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

Photoproduction in a semi-phenomenological approach

EPJ A 50, 101 (2015)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

$T_{\mu\kappa}$: full hadronic T-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\gamma}_{N} \underbrace{\gamma}_{\mu} \underbrace{\gamma}_{B} + \underbrace{\gamma}_{N} \underbrace{\gamma}_{\mu} \underbrace{\gamma}_{\lambda^{*},\Delta^{*}} \underbrace{\gamma}_{\mu} \underbrace{\gamma}_{B} \underbrace{\gamma}_{\mu}^{a}(q) P_{\mu}^{p}(E) + \sum_{i} \frac{\gamma}{E} \underbrace{\gamma}_{\mu;i}^{a}(q) P_{i}^{p}(E)}{E - m_{i}^{b}}$$

Simultaneous fit of pion- & photon-induced reactions

• $\pi N \rightarrow \pi N, \eta N, KY$: s-channel: resonances (T^P)

■ $\gamma p \rightarrow \pi N, \eta N, KY$: couplings of the polynomials and *s*-channel parameters

 $N \xrightarrow{\gamma} B \xrightarrow{m} A \xrightarrow{\gamma} N^*, \Delta^* \xrightarrow{m} B$

- couplings in contact terms: one per PW, couplings to πN , ηN , $\pi \Delta$, $K\Lambda$, $K\Sigma$
- t- & u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies (couplings fixed from SU(3))
- \Rightarrow > 900 fit parameters in total
 - large number of fit parameters, many from polynomials
 - can be regarded as advantage: prevents the inclusion of superfluous s-channel states to improve fit
 - χ²-minimization using Minuit on a supercomputer [JURECA, JSC, Journal of large-scale research facilities, 2, A62 (2016)]

Two potential formalism

$$T_{\mu\nu} = T^{P}_{\mu\nu} + T^{NP}_{\mu\nu} \qquad \qquad V_{\mu\nu} = V^{P}_{\mu\nu} + V^{NP}_{\mu\nu}$$

Non pole part ("background"): $V^{NP}_{\mu
u} \sim$ t- and u-channels

$$T^{NP}_{\mu\nu} = V^{NP}_{\mu\nu} + \sum_{\kappa} V^{NP}_{\mu\kappa} G_{\kappa} T^{NP}_{\kappa\nu} \quad \text{(numerically demanding)}$$

Pole part (resonances): s-channels

 $V^{P}_{\mu\nu} = \frac{\gamma^{a}_{\mu}\gamma^{c}_{\nu}}{z - m_{b}} \quad \gamma^{a,c}_{\mu} \sim \text{bare annihilation/creation vertex, } m_{b} \sim \text{bare mass}$ $T^{P}_{\mu\nu} = \frac{\Gamma^{a}_{\mu}\Gamma^{c}_{\nu}}{z - m_{b} - \Sigma} \Rightarrow T^{P} \text{ evaluated from } T^{NP}$

with dressed vertices $\Gamma^c_{\mu} = \gamma^c_{\mu} + \sum_{\nu} \gamma^c_{\nu} G_{\nu} T^{NP}_{\nu\mu}$, $\Gamma^a_{\mu} = \gamma^a_{\mu} + \sum_{\nu} T^{NP}_{\mu\nu} G_{\nu} \gamma^a_{\nu}$ and self-energy $\Sigma = \sum_{\mu} \gamma^c_{\mu} G_{\mu} \Gamma^a_{\mu}$,

Set of "fast" parameters in T^P optimized for each step in "slow" parameters \rightarrow "Nested" fit strategy

JüBo2024: Data base

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	8,396
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), eta (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (3287), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393+198), H (225), E (1227+495), F (397), $C_{x_1'}$ (74), $C_{z_1'}$ (26)	27,355
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5670), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86+217), H (128), E (903)	9,674
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112+320), Σ (535+80), P (63), T (291), F (144),	
	E (306), G (47), H (56)	10,954
$\gamma p \to K^+ \Lambda$	$d\sigma/d\Omega$ (2563), P (1663), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	6,072
$\gamma p \rightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$ (4381), P (402), Σ (280)	
	T (127) , $C_{x^{\prime}}$ (94), $C_{z^{\prime}}$ (94), O_x (127), O_z (127)	5,632
$\gamma p \to K^0 \Sigma^+$	$d\sigma/d\Omega$ (281), P (167)	448
	in total	73,066

Recent updates to JüBo I

preliminary

Double polarization observable \mathbb{G} for $\vec{\gamma}\vec{p} \to \pi^0 p$ and $\vec{\gamma}\vec{p} \to \pi^+ n$ [CLAS, Phys. Lett. B 817 (2021) 136304] (blue: 2022, red: 2024)

Recent updates to JüBo II

preliminary

 $\frac{d\sigma}{d\Omega} \text{ and } \sum \text{ for } \vec{\gamma}p \rightarrow \eta p \text{ [LEPS, Phys. Rev. C 106 (2022) 3, 035201]}$ (blue: 2022, red: 2024)

Recent updates to JüBo III

preliminary

Double-spin-polarization observable $\mathbb E$ for $\vec{\gamma}\vec{p} \to \pi^0 p$ [CLAS, EUL, Phys.J.A 59 (2023) 9, 217] (blue: 2022, red: 2024)

Change of Pole Positions

preliminary

N(1710) 1/2 ⁺ * * **	Re E_0 [MeV]	-2Im E ₀ [MeV]	$ r _{\pi N \to \pi N}$ [MeV]	$\theta_{\pi N \to \pi N}$ [deg]	N(1520) 3/2 ⁻ * * **	Re E_0 [MeV]	$-2 \text{Im } E_0$ [MeV]	$ r _{\pi N \to \pi N}$ [MeV]	$\theta_{\pi N \rightarrow \pi N}$ [deg]
2024	1586.8	107.6	2.8	-108.0	2024	1496.3	100.4	24.4	-18.2
2022	1605 ± 14	115 ± 9	5.5 ± 4.7	-114 ± 57	2022	1482 ± 6	126 ± 18	27 ± 21	-36 ± 48
PDG 2024	1700 ± 50	120 ± 40	7 ± 3	190 ± 70	PDG 2024	1510 ± 5	112.5 ± 7.5	35 ± 3	-10 ± 5
$\Delta(1600)$ 3/2 ⁺	Re E_0	$-2 \text{Im } E_0$	$ r _{\pi N \to \pi N}$	$\theta_{\pi N \to \pi N}$	$\Delta(1700) 3/2^-$	Re E_0	-2Im E ₀	$ r _{\pi N \to \pi N}$	$\theta_{\pi N \to \pi N}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	* * **	[MeV]	[MeV]	[MeV]	[deg]
2024	1592.8	84.2	9.7	-114.4	2024	1680.3	360.2	38.0	-6.2
2022	1590 ± 1	136 ± 1	11 ± 1	-106 ± 2	2022	1637 ± 64	295 ± 58	15 ± 23	-13 ± 147
PDG 2024	1520 ± 50	280 ± 40	25 ± 15	210 ± 30	PDG 2024	1665 ± 25	250 ± 50	25 ± 15	-20 ± 20
$N(1900) 3/2^+$	Re E_0	$-2 \text{Im } E_0$	$ r _{\pi N \to \pi N}$	$\theta_{\pi N \to \pi N}$	$N(1720) 3/2^+$	Re E_0	-2Im E ₀	$ r _{\pi N \to \pi N}$	$\theta_{\pi N \to \pi N}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	* * **	[MeV]	[MeV]	[MeV]	[deg]
2024	1903.5	141	1.07	-95.9	2024	1698.5	132.7	9.7	-8.2
2022	1905 ± 3	93 ± 4	1.6 ± 0.3	44 ± 21	2022	1726 ± 8	185 ± 12	15 ± 2	-60 ± 5
PDG 2024	1920 ± 20	130 ± 40	4 ± 2	-10 ± 30	PDG 2024	1680 ± 20	200 ± 50	15 ± 5	-110 ± 50

GDH sum rule

- Photoproduction process $\gamma N \to X$ can be characterized in terms of integrals of cross-sections
- For circularly polarized photons on longitudinally polarized nucleons either $\Delta \sigma = \sigma_{3/2} \sigma_{1/2}$ or $\sigma_{tot} = \sigma_{3/2} + \sigma_{1/2}$

Values for photoproduction on p or n targets: [I. strakovsky et al. Phys.Rev.C 105 (2022) 4, 045202]

 $I_{GDH,p} = 204.784482(35)\mu b$ $I_{GDH,n} = 232.25159(13)\mu b$

GDH sum rule - JüBo

preliminary

From JüBo 2024 fits for $\gamma p
ightarrow X$

$$I_{GDH} = \int_{E_{\gamma}^{thr}}^{E_{\gamma}} \frac{\Delta\sigma}{E_{\gamma}'} \, \mathrm{d}E_{\gamma}', \quad E_{\gamma} : \text{Upper integration limit}$$

- $\pi^0 p$ main contribution, followed by $\pi^+ n$
- ηp mainly negative
- missing contribution expected from 2π -channels

Summary

Jülich-Bonn DCC model:

Extraction of the N^* and Δ^* spectrum in a simultaneous analysis of pion- and photon-induced reactions:

- $\pi N \to \pi N, \eta N, K\Lambda$ and $K\Sigma$ lagrangian based description, unitarity & analyticity respected

- $\gamma N\to\pi N,\,\eta N,\,K\Lambda$ and $K\Sigma$ in a semi-phenomenological approach hadronic final state interaction: JüBo DCC analysis

- ightarrow analysis of \sim 73,000 data points
- New data sets and preliminary fit updates 2024
- GDH sum rule contribution of different channels

Outlook:

- \blacksquare Include $\gamma n \to X$ and calculate GDH sum rule for these processes
- Simultaneous fit of pion-, photon-induced and electroproduction data.

Thank you for your attention!

Appendix

preliminary

preliminary

Electroproduction of pseudoscalar mesons

Construction of the multipole amplitude $M^{IJ}_{\mu\gamma}$

Different approaches

Field theoretical approaches : DMT, ANL-Osaka, Jülich-Athens-Washington, ...

Example: Gauge invariant formulation by Haberzettl, Huang and Nakayama Phys. Rev. C56 (1997), Phys. Rrev. C74 (2006), Phys. Rev. C85 (2012)

- satisfies the generalized off-shell Ward-Takahashi identity
- earlier version of the Jülich-Bonn model as FSI

Details of the formalism

Polynomials:

$$P_{i}^{\mathsf{P}}(E) = \sum_{j=1}^{n} g_{i,j}^{\mathsf{P}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{P}(E - E_{0})}$$

$$P_{\mu}^{\mathsf{NP}}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\mathsf{NP}} \left(\frac{E - E_0}{m_N}\right)^j e^{-g_{\mu,n+1}^{\mathsf{NP}}(E - E_0)}$$

-
$$E_0 = 1077 \text{ MeV}$$

- $g_{i,j}^{\mathsf{P}}, g_{\mu,j}^{\mathsf{NP}}$: fit parameter

$$e^{-g(E-E_0)}$$
: appropriate
high energy behavior

$$-n = 3$$

-

back

Construction of the potential V: phenomenological vs field theoretical

Phenomenological

- implementation easier (e.g. polynomials)
- numerically advantageous

Fieldtheoretical

- development based on L complicated, numerically demanding
- information on the dynamical content
- in case of incomplete data base: model constrained by well-established physics
 - \rightarrow minimize uncertainties due to lack of complete data / high-quality data
- **3**-body unitarity requires discontinuities from *t*-channel ex. simultaneously with discontinuities from *s*-channels
 - \rightarrow meson ex. arises naturally from requirements of the S-matrix
- make predictions

... depends on your goal and your resources (data, computing power)

The scattering potential: s-channel resonances

$$V^{\mathrm{P}} = \sum_{i=0}^{n} \frac{\gamma^a_{\mu;i} \gamma^c_{\nu;i}}{z - m^b_i}$$

- $\gamma_{\nu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with bare coupling f (free parameter)
- z: center-of-mass energy
- m_i^b : bare mass (free parameter)

Vertex	\mathcal{L}_{int}
$N^*(S_{11})N\pi$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^\mu ec{ au} \partial_\mu ec{\pi} \Psi \; + \; { m h.c.}$
$N^*(S_{11})N\eta$	$rac{f}{m_\pi} ar{\Psi}_{N^st} \gamma^\mu \partial_\mu \eta \ \Psi \ + \ { m h.c.}$
$N^*(S_{11})N\rho$	$far{\Psi}_{N^st}\gamma^5\gamma^\muec{ au}ec{ ho}_\mu\Psi~+~{ m h.c.}$
$N^*(S_{11})\Delta\pi$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^5 ec{S} \partial_\mu ec{\pi} \Delta^\mu ~+~ { m h.c.}$

J < 3/2:

 $\gamma_{\nu:i}^{c} (\gamma_{\mu:i}^{a})$ from effective \mathcal{L}

■ $5/2 \le J \le 9/2$: correct dependence on L (centrifugal barrier)

$$\begin{array}{rcl} \left(\gamma^{a,c}\right)_{\frac{5}{2}-} &= \frac{k}{M}\left(\gamma^{a,c}\right)_{\frac{3}{2}+} \\ \left(\gamma^{a,c}\right)_{\frac{7}{2}-} &= \frac{k^2}{M^2}\left(\gamma^{a,c}\right)_{\frac{3}{2}-} \\ \left(\gamma^{a,c}\right)_{\frac{9}{2}-} &= \frac{k^3}{M^3}\left(\gamma^{a,c}\right)_{\frac{3}{2}+} \end{array}$$

$$(\gamma^{a,c})_{\frac{5}{2}} + = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}} - (\gamma^{a,c})_{\frac{7}{2}} + = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}} + (\gamma^{a,c})_{\frac{9}{2}} + = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}} - Side 1017$$

29th May, 2024

Slide 10117

The scattering potential: t- and u-channel exchanges

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πΝ	$\begin{array}{l} \mathrm{N,}\Delta,\!\left(\pi\pi\right)_{\!\sigma},\\ \left(\pi\pi\right)_{\!\rho}\end{array}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	Λ, Σ, Σ*, Κ*
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	Σ, Σ*, Κ*
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							$Ξ, Ξ^*, f_0, ω, φ, ρ$

Free parameters: cutoffs
$$\Lambda$$
 in the form factors: $F(q) = \left(\frac{\Lambda^2 - m_x^2}{\Lambda^2 + \overline{q}^2}\right)^n$, $n = 1, 2$

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U.-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m_\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	$NN\omega$	$-g_{NN\omega}\bar{\Psi}[\gamma^{\mu}-rac{\kappa_{\omega}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]\omega_{\mu}\Psi$
$N\Delta\pi$	$rac{g_N\Delta\pi}{m\pi}ar{\Delta}^\muec{S}^\dagger\cdot\partial_\muec{\pi}\Psi~+$ h.c.	$\omega \pi \rho$	$\frac{g_{\omega\pi\rho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-irac{g_N\Delta ho}{m_ ho}ar\Delta^\mu\gamma^5\gamma^\muec S^\dagger\cdotec ho_{\mu u}\Psi$ + h.c.
$NN\rho$	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa_{ ho}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN ho}(ec{ ho}_{\mu} imesec{ ho}_{ u})\cdotec{ ho}^{\mu u}$
$NN\sigma$	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$\frac{\kappa_{\rho}g_{NN\rho}^{2}}{2m_{N}}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})$
$\sigma\pi\pi$	$rac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}ec{\pi}\cdot\partial^{\mu}ec{\pi}\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta\Delta\pi}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma^{5}\gamma^{\nu}\vec{T}\Delta^{\mu}\partial_{\nu}\vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot \vec{ ho}_{\mu} \cdot \vec{T} \Delta^{ au}$
$NN\rho\pi$	$rac{g_{NN\pi}}{m_\pi} 2g_{NN ho} ar{\Psi} \gamma^5 \gamma^\mu ec{ au} \Psi(ec{ ho}_\mu imes ec{\pi})$	$NN\eta$	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa_1	$-rac{g_{NN\pi}}{m_\pi}m_{a_1}ar{\Psi}\gamma^5\gamma^\muec{ au}\Psiec{a}_\mu$	NNa_0	$g_{NNa_0}m_\piar{\Psi}ec{ au}\Psiec{a_0}$
$a_1 \pi \rho$	$-\frac{2g_{\pi a_1}\rho}{m_{a_1}}[\partial_{\mu}\vec{\pi}\times\vec{a}_{\nu}-\partial_{\nu}\vec{\pi}\times\vec{a}_{\mu}]\cdot[\partial^{\mu}\vec{\rho}^{\nu}-\partial^{\nu}\vec{\rho}^{\mu}]$	$\pi\eta a_0$	$g_{\pi\eta a_0} m_\pi \eta ec \pi \cdot ec a_0$
	$+\frac{2g_{\pi a_1\rho}}{2m_{a_1}}[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]$		

Thresholds of inelastic channels

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- \blacksquare opening of inelastic channels \Rightarrow branch point and new Riemann sheet

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:
 - discontinuities from t-channel exchanges

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- lacksim to approximate left-hand cut ightarrow Baryon u-channel exchange

Inclusion of the $\pi N \rightarrow \omega N$ channel

Yu-Fei Wang et al.

Motivation

- Completion of the Jülich model (not far above the previously highest threshold $K\Sigma$) \rightarrow refined analyses of the hadron spectra
- Preparation of the study of $\gamma N
 ightarrow \omega N$ (abundant high quality data)
- importance of ω in nuclear matter [H. Shen et al. 1998 NPA]
- Scattering length $a_{\omega N} \rightarrow$ whether or not there are in-medium bound states

Numerical fit

- 304 parameters (38 new), over 10000 data points (178 new)
- Two fit scenarios:
 - fit A non-pole parameters close to the previous solution
 - fit B non-pole parameters are changed more
- Selected fit results: Total cross section, backward/forward differential cross section

Further Improvements

Correlated χ^2 fit

elastic π**N** channel: not data but GWU SAID PWA

 $\hat{\Sigma} \sim$ covariance matrix

- $A \sim {
 m vector} ~{
 m of} ~{
 m fitted}$ PWs,
- $\hat{A} \sim \mathrm{vector} \ \mathrm{of} \ \mathrm{SAID} \ \mathrm{SE} \ \mathrm{PWs}$

 \rightarrow same χ^2 as fitting to data up to nonlinear order (included) \rightarrow needed for error analysis

 $\chi^{2}(A) = \chi^{2}(\hat{A}) + (A - \hat{A})^{T} \hat{\Sigma}^{-1}(A - \hat{A})$

■ "Missing resonance problem" → What resonances are relevant?

PRC 93. 065205 (2016)

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	8,396
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), eta (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (3287), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (1227), F (397), $C_{x_1^{\prime}}$ (74), $C_{z_1^{\prime}}$ (26)	26,662
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5670), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,457
$\gamma p \rightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (535), P (63), T (291), F (144),	
	E (306), G (47), H (56)	10,554
$\gamma p \rightarrow K^+ \Lambda$	$d\sigma/d\Omega$ (2563), P (1663), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	6,072
$\gamma p \to K^+ \Sigma^0$	$d\sigma/d\Omega$ (4381), P (402), Σ (280)	
	T (127) , $C_{x^{\prime}}$ (94), $C_{z^{\prime}}$ (94), O_{x} (127), O_{z} (127)	5,632
$\gamma p \to K^0 \Sigma^+$	$d\sigma/d\Omega$ (281), P (167)	448
	in total	71,756

