Gen-T

Decays of heavy mesons: a theoretical perspective using effective field theories

David Alejandro Barón Ospina PWA13/ATHOS8 2024

Special acknowledge

- Patricia Camargo Magalhães
- Diego Alejandro Milanes Carreño

Document available at:

https://repositorio.unal.edu.co/handle/unal/85546

Outline

1) Motivation

2) The
$$D^+_S
ightarrow K^+ K^- K^+$$
 decay

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

Outline

1) Motivation

2) The
$$D^+_S \rightarrow K^+ K^- K^+ \, {\rm decay}$$

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

Motivation

Motivation

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Vniver§itat 10 València

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Degrees of freedom

τ decays (N³LO)

△ DIS jets (NLO)

Heavy Quarkonia (NLO)
 e⁺e⁻ jets & shapes (res. NNLO)

• e.w. precision fits (NNLO) ∇ pp \rightarrow jets (NLO)

September 2015

Motivation

 $\alpha_{s}(Q^{2})$

0.3

$= QCD \alpha_s(M_z) = 0.1177 \pm 0.0013$ ¹⁰ Q [GeV] 100 1000 1 Image taken from : https://www.researchgate.net/figure/Summary-of-

measurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Degrees of freedom

u, d, s, c, b, t

τ decays (N³LO)

△ DIS jets (NLO)

Heavy Quarkonia (NLO)

September 2015

Motivation

 $\alpha_{s}(Q^{2})$

VNIVER^SITAT **D** VALÈNCIA

Degrees of freedom u, d, s, c, b, t !

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-The-

Motivation

Vniver§itat d València

Motivation

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Gen—T IFIC Degrees of freedom

u, d, s, c, b, t !

New degrees of freedom

Vniver§itat d València

念記

Motivation

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Degrees of freedom

u, d, s, c, b, t !

New degrees of freedom

$$\pi, K, \eta, D, B, \ldots$$

Vniver§itat d València

Motivation

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Gen—T IFIC Degrees of freedom

u, d, s, c, b, t !

New degrees of freedom

 $\frac{\pi, K, \eta, D, B, \dots}{\chi pt}$

Vniver§itat d València

Motivation

Image taken from : https://www.researchgate.net/figure/Summary-ofmeasurements-of-a-s-as-a-function-of-the-energy-scale-Q-Therespective-degree_fig2_287249926

Gen—T IFIC Degrees of freedom

u, d, s, c, b, t !

New degrees of freedom

 $\frac{\pi, K, \eta, D, B}{\chi pt}, \dots$

念

1) Motivation

2) The
$$D^+_S \rightarrow K^+ K^- K^+$$
 decay

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

1) Motivation

2) The
$$D^+_S
ightarrow K^+ K^- K^+$$
 decay

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

The $D_s^+ \to K^+ K^- K^+$ decay

The $D_s^+ \to K^+ K^- K^+ \text{decay}$ Topologies

The $D_s^+ \to K^+ K^- K^+ \text{decay}$ Topologies

L. Chau. Quark Mixing in Weak Interactions, 1983

The $D_s^+ \to K^+ K^- K^+ \text{decay}$

L. Chau. Quark Mixing in Weak Interactions, 1983

External W-emission

The $D_s^+ \to K^+ K^- K^+ \text{decay}$

External W-emission

Internal W-emission

The $D_s^+ \to K^+ K^- K^+$ decay

External W-emission

Internal *W*-emission

W-exchange

6/30

念

The $D_s^+ \to K^+ K^- K^+ \text{decay}$

External W-emission

Internal *W*-emission

W-exchange

W-annihilation

6/30

念記

The $D_s^+ \to K^+ K^- K^+$ decay

Vniver§itat 19 València

6/30

念記

The $D_s^+ \to K^+ K^- K^+$ decay

念

The $D_s^+ \to K^+ K^- K^+$ decay

6/30

念記

The $D_s^+ \to K^+ K^- K^+$ decay

L. Chau. Quark Mixing in Weak Interactions, 1983

External *W*-emission

Internal W-emission

W-annihilation

3

Penguin

W-exchange

Sideways Penguin

Vniver§itat 10 València

The $D_s^+ \to K^+ K^- K^+$ decay

L. Chau. Quark Mixing in Weak Interactions, 1983

Gen—T

6/30

Vniver§itat d València

R. T. Aude et al. Multimeson

model for the

 $D^+ \rightarrow K^+ K^- K^+$ decay amplitude

, 2018

R. T. Aude et al. Multimeson

model for the

 $D^+ \rightarrow K^+ K^- K^+$ decay amplitude

, 2018

 $D_S^+ \to K^+ K^- K^+$

Vniver§itat © València

 $D_S^+ \to K^+ K^- K^+$ $D^+ \to K^+ K^- K^+$

Gen-T

ā

Vniver§itat 19 València

 $D_S^+ \to K^+ K^- K^+$ $D^+ \to K^+ K^- K^+$

 $|f_0(1370)\rangle = -\sin\varepsilon |S_1\rangle + \cos\varepsilon |S_8\rangle$

Gen-T

念記

念記

10/30

翻

Vniver§itat 19 València

10/30

念記

認見

Model: Final states interactions (FSI)

Model: Why FSI?

Model: Why FSI?

Model: Why FSI?

Model: Why FSI?

- I. The interaction kernel times the pole is not zero at the mass of the resonance
- II. Considering only the imaginary part of the loop (*K* matrix approximation) a width to the resonance propagator is given

Vniver§itat © València

12/30

Vniver§itat ® València

 $[\phi]$

Vniver§itat 19 València

 $[\phi]$

 $[f_0]$

 $[\phi]$

 $[f_0]$

2.0

Combined

Vniver§itat 19 València

Parameters of the model

Parameters of the model

Parameters of the model

Model implemented with parameters taken from recent data analysis

念記
Model implemented with parameters taken from recent data analysis

Parameters taken from: R. Aaij et al. Dalitz plot

analysis of the $D^+ \rightarrow K^+ K^- K^+$ decay, 2019.

念記

1) Motivation

2) The
$$D^+_S \rightarrow K^+ K^- K^+$$
 decay

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

1) Motivation

2) The
$$D^+_S \rightarrow K^+ K^- K^+$$
 decay

3) Inclusive charmonium production from $\,B\,$ meson decays

4) Conclusions and perspectives

Inclusive charmonium production from $\,B\,$ meson decays

Inclusive charmonium production from $\,B\,$ meson decays

Theory: NRQCD factorization

Inclusive charmonium production from B meson decays Theory: NRQCD factorization

$\Gamma(Y \to H(c\bar{c})X) = \sum_{n} \Gamma[n] < O_n^H >$

Inclusive charmonium production from $\,B\,$ meson decays

Theory: NRQCD factorization

$\Gamma(Y \to H(c\bar{c})X) = \sum_{n} \Gamma[n] < O_n^H > n$

Vniver§itat d València

Inclusive charmonium production from $\,B\,$ meson decays

Theory: NRQCD factorization

$\Gamma(Y \to H(c\bar{c})X) = \sum_{n} \Gamma[n] < O_n^H >$ Short-distance dynamics

Vniver§itat 10 València

念記

$$B \to H(c\bar{c}) X \qquad b \to c\bar{c} q$$

$$B \rightarrow H(c\bar{c}) X$$

$$b \rightarrow c \bar{c} q$$

Same short-distance dynamics

19/30

念記

$$B \to H(c\bar{c}) X$$

$$b \rightarrow c \bar{c} q$$

Same short-distance dynamics

19/30

念記

$$B \to H(c\bar{c}) X$$

$$b \rightarrow c \bar{c} q$$

Same short-distance dynamics

$$B \to H(c\bar{c}) X$$

$$b \rightarrow c \bar{c} q$$

Same short-distance dynamics

Gen-T

Vniver§itat 19 València

念記

$$B \to H(c\bar{c}) X$$

$$b \to c\bar{c} q$$
Same short-distance dynamics
$$\vec{c} \qquad \vec{c} \qquad \vec{c$$

Gen-T

> Vniver§itat id València

 \overline{c}

念記

Gen-T

19/30

VNIVERSITAT c ID VALÈNCIA

 \overline{c}

С

 \overline{q}

 \overline{q}

 \overline{c}

劉

 $\mathscr{H} = \frac{G_F}{\sqrt{2}} \sum_{s,d} \{ V_{cb}^* V_{cq} [\frac{1}{3} C_1 O_1 + C_8 O_8] - V_{tb}^* V_{tq} \sum_{i=3}^6 [c_i O_i] \}$

operators

leading logarithms, 1996

Gen—T

$\Gamma[n] = \Gamma_0 C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n])$

Function	State [n]	
$3(1-\eta)^2$	${}^{1}S_{0}^{(1)}$	
$(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(1)}$	-
$2(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(1)}$	$f[n](\boldsymbol{\eta})$
$\frac{9}{2}(1-\eta)^2$	${}^{1}S_{0}^{(8)}$	-
$\frac{3}{2}(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(8)}$	-
$3(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(8)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{1}S_{0}^{(1)}$	
$\frac{2(3(C_3+C_5)+C_4+C_6)}{C_1}$	${}^{3}S_{1}^{(1)}$	-
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{3}P_{1}^{(1)}$	$\delta_n[n]$
$\frac{4(C_4 - C_6)}{C_8}$	${}^{1}S_{0}^{(8)}$	
$\frac{4(C_4+C_6)}{C_8}$	${}^{3}S_{1}^{(8)}$	
$\frac{4(C_4 - C_6)}{C_8}$	${}^{3}P_{1}^{(8)}$	

Function	State [n]	
$3(1-\eta)^2$	${}^{1}S_{0}^{(1)}$	
$(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(1)}$	
$2(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(1)}$	$f[n](\boldsymbol{\eta})$
$\frac{9}{2}(1-\eta)^2$	${}^{1}S_{0}^{(8)}$	
$\frac{3}{2}(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(8)}$	
$3(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(8)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{1}S_{0}^{(1)}$	
$\frac{2(3(C_3+C_5)+C_4+C_6)}{C_1}$	${}^{3}S_{1}^{(1)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{3}P_{1}^{(1)}$	$\delta_n[n]$
$\frac{4(C_4 - C_6)}{C_8}$	${}^{1}S_{0}^{(8)}$	op[n]
$\frac{4(C_4+C_6)}{C_8}$	${}^{3}S_{1}^{(8)}$	
$\frac{4(C_4 - C_6)}{C_8}$	${}^{3}P_{1}^{(8)}$	

Function	State [n]	
$3(1-\eta)^2$	${}^{1}S_{0}^{(1)}$	
$(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(1)}$	
$2(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(1)}$	$f[n](\boldsymbol{\eta})$
$\frac{9}{2}(1-\eta)^2$	${}^{1}S_{0}^{(8)}$	
$\frac{3}{2}(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(8)}$	-
$3(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(8)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{1}S_{0}^{(1)}$	
$\frac{2(3(C_3+C_5)+C_4+C_6)}{C_1}$	${}^{3}S_{1}^{(1)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{3}P_{1}^{(1)}$	$\delta_n[n]$
$\frac{4(C_4 - C_6)}{C_8}$	${}^{1}S_{0}^{(8)}$	op[n]
$\frac{4(C_4+C_6)}{C_8}$	${}^{3}S_{1}^{(8)}$	
$\frac{4(C_4 - C_6)}{C_8}$	${}^{3}P_{1}^{(8)}$	

 $\Gamma[n] = \Gamma_0 C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n])$ $\eta = rac{4m_c^2}{m_b^2}$

E. Braaten et al. Helicity decomposition

for inclusive J / Ψ production, 1996.

Function	State [n]	
$3(1-\eta)^2$	${}^{1}S_{0}^{(1)}$	
$(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(1)}$	-
$2(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(1)}$	$f[n](\boldsymbol{\eta})$
$\frac{9}{2}(1-\eta)^2$	${}^{1}S_{0}^{(8)}$	-
$\frac{3}{2}(1-\eta)^2(1+2\eta)$	${}^{3}S_{1}^{(8)}$	-
$3(1-\eta)^2(1+2\eta)$	${}^{3}P_{1}^{(8)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{1}S_{0}^{(1)}$	
$\frac{2(3(C_3+C_5)+C_4+C_6)}{C_1}$	${}^{3}S_{1}^{(1)}$	
$\frac{2(3(C_3-C_5)+C_4-C_6)}{C_1}$	${}^{3}P_{1}^{(1)}$	$\delta_n[n]$
$\frac{4(C_4 - C_6)}{C_8}$	${}^{1}S_{0}^{(8)}$	
$\frac{4(C_4+C_6)}{C_8}$	${}^{3}S_{1}^{(8)}$	
$\frac{4(C_4-C_6)}{C_8}$	${}^{3}P_{1}^{(8)}$	+

 $\Gamma[n] = \Gamma_0 C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n])$ $\eta = rac{4m_c^2}{m_b^2}$

E. Braaten et al. Helicity decomposition

for inclusive J / Ψ production, 1996.

A. Petrelli et al. NLO production and

decay of quarkonium, 1998.

Vniver§itat 19 València

21/30

念記

Virtual gluon corrections

Virtual gluon corrections

Virtual gluon corrections

Real gluon corrections

Vniver§itat 19 València

NLO result

Virtual gluon corrections

Real gluon corrections

q=s,d

С

1000

q=s,d

$$\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n] \right) \right. \\ \left. + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta,\mu,\tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right]$$

Virtual gluon corrections

С

С

b

10000

Real gluon corrections

С

NLO result

С

NLO result

Gen—T

NLO result

Gen—T

NLO result

$$\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n]) + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta,\mu,\tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right]$$

念記

$$\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n]) + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta,\mu,\tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right]_{\text{NLO}}$$

念記

$$\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n]) + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta, \mu, \tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta, \mu, \tilde{\mu}) + C_{[8]}^2 g_3[n](\eta, \mu, \tilde{\mu}) \right) \right]$$
NNLO
NLO

$$\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) (1 + \delta_P[n]) + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta, \mu, \tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta, \mu, \tilde{\mu}) + C_{[8]}^2 g_3[n](\eta, \mu, \tilde{\mu}) \right) \right]$$

$$NNLO \qquad NLO \qquad NL$$

念記

$$\begin{split} &\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n]\right) \right. \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 \underline{g_1[n](\eta,\mu,\tilde{\mu})} + 2C_{[1]} \underline{C_{[8]}g_2[n](\eta,\mu,\tilde{\mu})} + C_{[8]}^2 \underline{g_3[n](\eta,\mu,\tilde{\mu})} \right) \right] \\ &\left. \left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) + \left(\frac{\alpha_s(\mu)}{4\pi} \right)^2 C_{[8]}^2 \frac{(g_2[n](\eta,\mu,\tilde{\mu}))^2}{f[n]} \right] \right] \end{split}$$

Vniver§itat ið València

念記

$$\begin{split} \Gamma[n] &= \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n] \right) \right. \\ &+ \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 g_1[n](\eta,\mu,\tilde{\mu}) + 2C_{[1]} C_{[8]} g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. \Gamma[n] &= \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n] \right) \right. \\ &+ \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]} g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) + \left(\frac{\alpha_s(\mu)}{4\pi} \right)^2 C_{[8]}^2 \frac{(g_2[n](\eta,\mu,\tilde{\mu}))^2}{f[n]} \right] \\ &\left. \frac{NLO}{NLO} \right] \end{split}$$

Vniver§itat 19 València

23/30

$$\begin{split} &\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n]\right) \right. \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 \underline{g_1[n](\eta,\mu,\tilde{\mu})} + 2C_{[1]} \underline{C_{[8]}g_2[n](\eta,\mu,\tilde{\mu})} + C_{[8]}^2 \underline{g_3[n](\eta,\mu,\tilde{\mu})} \right) \right] \\ &\left. \Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n]\right) \right. \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) + \left(\frac{\alpha_s(\mu)}{4\pi} \right)^2 C_{[8]}^2 \frac{(g_2[n](\eta,\mu,\tilde{\mu}))^2}{f[n]} \right] \end{split}$$

Vniver§itat ið València

念記

$$\begin{split} &\Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n]\right) \right. \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(C_{[1]}^2 \underline{g_1[n](\eta,\mu,\tilde{\mu})} + 2C_{[1]} \underline{C_{[8]}g_2[n](\eta,\mu,\tilde{\mu})} + C_{[8]}^2 \underline{g_3[n](\eta,\mu,\tilde{\mu})} \right) \right] \\ &\left. \Gamma[n] = \Gamma_0 \left[C_{[1,8]}^2 f[n](\eta) \left(1 + \delta_P[n]\right) \right. \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) + \left(\frac{\alpha_s(\mu)}{4\pi} \right)^2 \underline{C_{[8]}^2 (\underline{g_2[n](\eta,\mu,\tilde{\mu}))^2}}_{NNLO} \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\mu,\tilde{\mu}) + C_{[8]}^2 g_3[n](\eta,\mu,\mu,\tilde{\mu}) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_2[n](\eta,\mu,\mu,\mu) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu,\mu) \right) \right] \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C_{[1]} C_{[8]}g_3[n](\eta,\mu) \right) \right] \\ \\ &\left. + \frac{\alpha_s(\mu)}{4\pi} \left(2C$$

Vniver§itat d València

23/30

Experimental fitting for χc states production

念記

Experimental fitting for $\chi c\,$ states production

$$\begin{aligned} \left| H\left({}^{2S+1}L_{J}\right) \right\rangle &= O(1) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1]}\right) \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm 1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v^{2}) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v^{2}) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{aligned}$$

Experimental fitting for $\chi c\,$ states production

$$\begin{split} \left| H\left({}^{2S+1}L_{J}\right) \right\rangle &= O(1) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1]}\right) \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)gg \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split} \\ \begin{aligned} \mathcal{B}(B \to \chi_{c2} + X) &= O\left(\frac{\langle O_{1}^{\chi_{c2}}({}^{3}P_{1}) \rangle}{m_{c}^{2}} + B\left\langle O_{8}^{\chi_{c2}}({}^{3}S_{1}) \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split}$$

Experimental fitting for $\chi c\,$ states production

$$\begin{split} \left| H\left({}^{2S+1}L_{J}\right) \right\rangle &= O(1) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1]}\right) \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)gg \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split} \\ \begin{aligned} \mathcal{B}(B \to \chi_{c2} + X) &= O\left(\frac{\langle O_{1}^{\chi_{c2}}({}^{3}P_{2}) \rangle}{m_{c}^{2}} + B\left\langle O_{8}^{\chi_{c2}}({}^{3}S_{1}) \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split}$$

Parameter	Value	Corresponding quantum number ${}^{2s+1}L_J$ and color channel.
A	$-0.0252{ m GeV^{-3}}$	$^{3}P_{0}$ Singlet
В	0.3279GeV^{-3}	3S_1 Octet
C	$-0.0147 \mathrm{GeV}^{-3}$	$^{3}P_{1}$ Singlet
D	$-0.0200{ m GeV^{-3}}$	$^{3}P_{2}$ Singlet

Experimental fitting for $\chi c\,$ states production

$$\begin{split} \left| H\left({}^{2S+1}L_{J}\right) \right\rangle &= O(1) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1]}\right) \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)gg \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split} \\ \begin{aligned} \mathcal{B}(B \to \chi_{c2} + X) &= O\left(\frac{\langle O_{1}^{\chi_{c2}}({}^{3}P_{2}) \rangle}{m_{c}^{2}} + B\left\langle O_{8}^{\chi_{c2}}({}^{3}S_{1}) \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split}$$

	Parameter	Value	Corresponding quantum number ${}^{2s+1}L_J$ and color channel.
	А	$-0.0252{ m GeV}^{-3}$	$^{3}P_{0}$ Singlet
	В	0.3279GeV^{-3}	3S_1 Octet
	C	$-0.0147 \mathrm{GeV}^{-3}$	${}^{3}P_{1}$ Singlet
-	D	$-0.0200{ m GeV^{-3}}$	${}^{3}P_{2}$ Singlet
Gen-	Τ		

Experimental fitting for $\chi c\,$ states production

$$\begin{split} \left| H\left({}^{2S+1}L_{J}\right) \right\rangle &= O(1) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1]}\right) \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O(v) \left| Q\bar{Q}\left({}^{2S+1}(L\pm1)_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)g \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S'+1}L_{J'}^{[8]}\right)gg \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split} \\ \begin{aligned} \mathcal{B}(B \to \chi_{c2} + X) &= O\left(\frac{\langle O_{1}^{\chi_{c2}}({}^{3}P_{2}) \rangle}{m_{c}^{2}} + B\left\langle O_{8}^{\chi_{c2}}({}^{3}S_{1}) \right\rangle \\ &+ O\left(v^{2}\right) \left| Q\bar{Q}\left({}^{2S+1}L_{J}^{[1,8]}\right)gg \right\rangle \\ &+ \dots, \end{split}$$

	Parameter	Value	Corresponding quantum number ${}^{2s+1}L_J$ and color channel.
	A	$-0.0252{ m GeV^{-3}}$	$^{3}P_{0}$ Singlet
	В	0.3279GeV^{-3}	3S_1 Octet
	C	$-0.0147 \mathrm{GeV}^{-3}$	${}^{3}P_{1}$ Singlet
	D	$-0.0200{ m GeV^{-3}}$	${}^{3}P_{2}$ Singlet
Gen-	Τ	·	

$$O_1 \equiv \left\langle O_1^{\chi_{c0}}({}^3P_0) \right\rangle / m_c^2$$
$$O_8 \equiv \left\langle O_8^{\chi_{c0}}({}^3S_1) \right\rangle$$

IFIC INSTITUT DE FÍSICA C O R PU S C U LA R

Vniver§itat d València

Experimental fitting for $\chi c\,$ states production

$$\begin{split} \left| H \left({}^{2S+1}L_J \right) \right\rangle &= O(1) \left| Q\bar{Q} \left({}^{2S+1}L_J^{[1]} \right) \right\rangle \\ &+ O(v) \left| Q\bar{Q} \left({}^{2S+1}(L \pm 1)_{J'}^{[8]} \right) g \right\rangle \\ &+ O(v) \left| Q\bar{Q} \left({}^{2S+1}(L \pm 1)_{J'}^{[8]} \right) g \right\rangle \\ &+ O(v^2) \left| Q\bar{Q} \left({}^{2S'+1}L_{J'}^{[8]} \right) g \right\rangle \\ &+ O(v^2) \left| Q\bar{Q} \left({}^{2S'+1}L_{J'}^{[8]} \right) g \right\rangle \\ &+ O(v^2) \left| Q\bar{Q} \left({}^{2S+1}L_{J}^{[1,8]} \right) gg \right\rangle \\ &+ \dots, \end{split} \\ \begin{aligned} \mathcal{B}(B \to \chi_{c2} + X) &= O\left(\frac{\langle O_1^{\chi_{c2}}({}^{3}P_1) \rangle}{m_c^2} + B \left\langle O_8^{\chi_{c2}}({}^{3}S_1) \right\rangle \\ &+ O\left(v^2 \right) \left| Q\bar{Q} \left({}^{2S+1}L_{J}^{[1,8]} \right) gg \right\rangle \\ &+ \dots, \end{split}$$

	Parameter	Value	Corresponding quantum number ${}^{2s+1}L_J$ and color channel.
	A	$-0.0252{ m GeV}^{-3}$	$^{3}P_{0}$ Singlet
	В	0.3279GeV^{-3}	3S_1 Octet
	С	$-0.0147 \mathrm{GeV}^{-3}$	${}^{3}P_{1}$ Singlet
	D	$-0.0200{ m GeV}^{-3}$	${}^{3}P_{2}$ Singlet
Gen-	Τ		

$$O_1 \equiv \left\langle O_1^{\chi_{c0}}({}^3P_0) \right\rangle / m_c^2$$
$$O_8 \equiv \left\langle O_8^{\chi_{c0}}({}^3S_1) \right\rangle$$

Vniver§itat d València

Measurement	Experimental value
$\mathscr{B}(b \to \chi_{c0} X)$	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b \to \chi_{c1} X)$	$(2.76 \pm 0.59 \pm 0.23 \pm 0.89_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b \to \chi_{c2} X)$	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36_{\mathscr{B}}) \times 10^{-3}$
$\frac{\mathscr{B}(b \to \chi_{c1} X)}{\mathscr{B}(b \to \chi_{c0} X)}$	$0.92 \pm 0.20 \pm 0.02 \pm 0.14_{\mathscr{B}}$
$\frac{\mathscr{B}(b \to \chi_{c2} X)}{\mathscr{B}(b \to \chi_{c0} X)}$	$0.38 \pm 0.07 \pm 0.01 \pm 0.05_{\mathscr{B}}$

R. Aaij et al. Study of charmonium production in bhadron decays and first evidence for the decay $B_s^0 \rightarrow$ $\phi \phi \phi$, 2017

Measurement	Experimental value
$\mathscr{B}(b \to \chi_{c0} X)$	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b \to \chi_{c1} X)$	$(2.76 \pm 0.59 \pm 0.23 \pm 0.89_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b \to \chi_{c2} X)$	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36_{\mathscr{B}}) \times 10^{-3}$
$\frac{\mathscr{B}(b \to \chi_{c1} X)}{\mathscr{B}(b \to \chi_{c0} X)}$	$0.92 \pm 0.20 \pm 0.02 \pm 0.14_{\mathscr{B}}$
$\frac{\mathscr{B}(b \to \chi_{c2} X)}{\mathscr{B}(b \to \chi_{c0} X)}$	$0.38 \pm 0.07 \pm 0.01 \pm 0.05_{\mathscr{B}}$

R. Aaij et al. Study of charmonium production in bhadron decays and first evidence for the decay $B_s^0 \rightarrow$ $\phi\phi\phi$, 2017

Measu	urement	Experimental value
$\mathcal{B}(b - \mathcal{B}(b))$	$\rightarrow \chi_{c0} X$)	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94_{\mathscr{B}}) \times 10^{-3}$ $(2.76 \pm 0.50 \pm 0.22 \pm 0.80_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b - \mathscr{B}(b - b))$	$ \stackrel{\rightarrow}{\times} \chi_{c1} X) $ $ \stackrel{\rightarrow}{\times} \chi_{c2} X) $	$(2.76 \pm 0.39 \pm 0.23 \pm 0.89_{\mathscr{B}}) \times 10^{-3}$ $(1.15 \pm 0.20 \pm 0.07 \pm 0.36_{\mathscr{B}}) \times 10^{-3}$
$rac{\mathscr{B}(b-)}{\mathscr{B}(b-)}$	$ \begin{array}{c} \stackrel{\rightarrow}{\chi_{c1} X)} \\ \stackrel{\rightarrow}{\chi_{c0} X) \end{array} $	$0.92 \pm 0.20 \pm 0.02 \pm 0.14_{\mathscr{B}}$
$\frac{\mathscr{B}(b-)}{\mathscr{B}(b-)}$	$ \begin{array}{c} \frac{\partial \chi_{c2} X}{\partial \chi_{c0} X} \end{array} $	$0.38 \pm 0.07 \pm 0.01 \pm 0.05_{\mathscr{B}}$

R. Aaij et al. Study of charmonium production in bhadron decays and first evidence for the decay $B_s^0 \rightarrow \phi \phi \phi$, 2017

25/30

Vniver§itat © València

Measu	rement	Experimental value	
$ \begin{array}{c} \mathscr{B}(b \to a) \\ \mathscr{B}(b \to a) \end{array} $	$\chi_{c0} X$	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94_{\mathscr{B}}) \times 10^{-3}$ $(2.76 \pm 0.59 \pm 0.23 \pm 0.89_{\mathscr{B}}) \times 10^{-3}$	
$\mathscr{B}(b \rightarrow \mathscr{B}(b \rightarrow b))$	$\chi_{c1} X$	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36_{\mathscr{B}}) \times 10^{-3}$	
$\frac{\mathscr{B}(b\rightarrow)}{\mathscr{B}(b\rightarrow)}$	$\frac{\chi_{c1} X}{\chi_{c0} X}$	$0.92 \pm 0.20 \pm 0.02 \pm 0.14_{\mathscr{B}}$	
$\frac{\mathscr{B}(b\rightarrow}{\mathscr{B}(b\rightarrow})$	$\frac{\chi_{c2} X}{\chi_{c0} X}$	$0.38 \pm 0.07 \pm 0.01 \pm 0.05_{\mathscr{B}}$	

R. Aaij et al. Study of

charmonium production in b-

hadron decays and first

evidence for the decay $B_s^0 \rightarrow$

φφφ, 2017

Vniver§itat id València

Measurement	Experimental value
$ \begin{aligned} \mathscr{B}(b \to \chi_{c0} \ X) \\ \mathscr{B}(b \to \chi_{c1} \ X) \end{aligned} $	$(3.02 \pm 0.47 \pm 0.23 \pm 0.94_{\mathscr{B}}) \times 10^{-3}$ $(2.76 \pm 0.59 \pm 0.23 \pm 0.89_{\mathscr{B}}) \times 10^{-3}$
$\mathscr{B}(b \to \chi_{c2} X)$	$(1.15 \pm 0.20 \pm 0.07 \pm 0.36_{\mathscr{B}}) \times 10^{-3}$
$\frac{\mathscr{B}(b \to \chi_{c1} X)}{\mathscr{B}(b \to \chi_{c0} X)}$ $\mathscr{B}(b \to \chi_{c0} X)$	$0.92 \pm 0.20 \pm 0.02 \pm 0.14_{\mathscr{B}}$
$\frac{\mathcal{B}(b \to \chi_{c2} X)}{\mathcal{B}(b \to \chi_{c0} X)}$	$0.38 \pm 0.07 \pm 0.01 \pm 0.05_{\mathscr{B}}$

$$m_b = (4.8 \pm 0.3) \text{GeV}$$

 $2m_c = (2.54 \pm 0.04) \text{GeV}$

念記

$$m_b = (4.8 \pm 0.3) \text{GeV}$$

 $2m_c = (2.54 \pm 0.04) \text{GeV}$

劉

 $m_b = (4.8 \pm 0.3) \text{GeV}$ $2m_c = (2.54 \pm 0.04) \text{GeV}$

Vniver§itat d València

0.0041901

Mean

--- CI 68%

劉

0.0040545

Vniver§itat d València

念記

There is one problem....

For the ratio of the branching fractions

There is one problem....

27/30

1) Motivation

2) The
$$D^+_S \rightarrow K^+ K^- K^+$$
 decay

- 3) Inclusive charmonium production from $\,B\,$ meson decays
- 4) Conclusions and perspectives

1) Motivation

2) The
$$D^+_S
ightarrow K^+ K^- K^+$$
 decay

3) Inclusive charmonium production from $\,B\,$ meson decays

4) Conclusions and perspectives

Conclusions and perspectives

- For the $D_s^+ \rightarrow 3K$ decay a model to the external W-emission topology has been achieved.
- It is necessary to fit the $D_s^+ \rightarrow 3K$ decay model parameters not only using the external *W*-emission topology but also constraining them even more by the inclusion of the *W*-annihilation topology
- Inclusive charmonium production from *B* meson decays can be modeled using NRQCD. However, the fitting of the LDMEs for χ_c states has proven that either the model or the minimization process within the fitting is no accurate enough for the ratio of the branching fractions.
- The next step would be to compute the SDCs at NNLO in QCD to estimate in a proper way the

SDCs in the double parameter power counting.

References

- L. Chau. Quark Mixing in Weak Interactions, Phys. Rept., 95:1–94, 1983.
- R. T. Aude et al. Multimeson model for the $D^+ \rightarrow K^+ K^- K^+$ decay amplitude Phys. Rev. D, 98(5):056021, 2018.
- P. C. Magalhães et al. Multibody decay analyses: A new phenomenological model for meson-meson subamplitudes. Phys. Rev. D, 102(7):076012, 2020.
- J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. B, 250:465–516, 1985.
- G. Ecker et al. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B, 321:311–342, 1989.
- R. Aaij et al. Dalitz plot analysis of the $D^+ \rightarrow K^+K^-K^+$ decay, JHEP, 04:063, 2019.
- G. Buchallla et al. Weak decays beyond leading logarithms, Reviews of Modern Physics, 68(4):1125–1244, Oct 1996.
- E. Braaten et al. Helicity decomposition for inclusive J / Ψ production, Physical Review D, 54(5):3216–3227, Sep 1996.
- A. Petrelli et al. NLO production and decay of quarkonium, Nuclear Physics B, 514(1-2):245–309, Mar 1998.
- M. Beneke et al. QCD analysis of inclusive B decay into charmonium, Phys. Rev. D, 59:054003, 1999.
- **Gen** R. Aaij et al. Study of charmonium production in b-hadron decays and first evidence for the decay $B_s^0 \rightarrow \phi \phi \phi$, Eur. Phys. J. C, 77(9):609, 2017.

S. Barsuk et al. Test of nrqcd with charmonium production in inclusive b-hadron decays. LAL 17-051, jul 2017.

D VALÈNCIA 30/30

VNIVER^SITAT