Strange-Meson Spectroscopy with COMPASS

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

PWA13/ATHOS8 May 28, 2024

FOR PHYSICS

MAX PLANCK INS

The Strange-Meson Spectrum

PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago

Strange-Meson Spectroscopy with COMPASS COMPASS Setup for Hadron Beams

TAR Agatt [COMPASS, Nucl. Instrum, Methods 779 (2015) 69]

Strange-Meson Spectroscopy with COMPASS

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- $\blacktriangleright K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - COMPASS measured world'

Strange-Meson Spectroscopy with COMPASS

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- \blacktriangleright $K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - COMPASS measured world's largest data set of about 720 k events

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► *J^P* spin and parity
- ▶ *M^ε* spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► *J^P* spin and parity
- ▶ *M^ε* spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

S. Wallner

Partial-Wave Decomposition

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{a,b \in \mathbb{W}_z(m_{K\pi\pi}, t')} \Psi_a(\tau) \rho_{ab}(m_{K\pi\pi}, t') \left[\Psi_b(\tau)\right]^*$$

- Measure spin-density matrix $\rho_{ab}(m_{K\pi\pi}, t')$ in independently $(m_{K\pi\pi}, t')$ cells
 - ▶ No assumption about $K^-\pi^-\pi^+$ resonances
- Wave set W_z(m_{Kππ}, t') inferred from data using regularization-based model-selection techniques
- Bootstrap resampling to improve uncertainty estimates
 - Performed about 20 M fits
- Detailed Monte Carlo input-output studies

Resonance-Model Fit

$$\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t') = \hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') \left[\hat{\mathcal{T}}_{b}(m_{K\pi\pi},t')\right]^{*}$$
$$\hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other *K*⁻π⁻π⁺ production mechanisms

Resonance-Model Fit

$$\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t') = \hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') \left[\hat{\mathcal{T}}_{b}(m_{K\pi\pi},t')\right]^{*}$$
$$\hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components

Resonance-Model Fit

$$\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t') = \hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') \left[\hat{\mathcal{T}}_{b}(m_{K\pi\pi},t')\right]^{*}$$
$$\hat{\mathcal{T}}_{a}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms

Incoherent Backgrounds

- ▶ Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ and other reactions (in total about 10%)
 - Very good model for dominant $\pi^-\pi^-\pi^+$ background from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial wave
 - Large in some waves, e.g. with ho(770) isobar
 - Small in other waves, e.g. with K*(892) isobar

Incoherent Backgrounds

- ▶ Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ and other reactions (in total about 10%)
- Very good model for dominant $\pi^-\pi^-\pi^+$ background from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial waves
 - Large in some waves, e.g. with ρ(770) isobar
 Small in other waves, e.g. with K*(892) isobar

Incoherent Backgrounds

- Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^$ and other reactions (in total about 10%)
- ► Very good model for dominant $\pi^-\pi^-\pi^+$ background from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial waves
 - Large in some waves, e.g. with $\rho(770)$ isobar
 - ▶ Small in other waves, e.g. with K*(892) isobar

[SW PhD] Jar Dysit

Handling of Incoherent Backgrounds

- Challanging to explicitly treat in partial-wave decomposition
 - ➡ Effectively taken into account

$$\rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

- → Measured ρ_{ab} include background Explicitly model them in resonance-model fi $\hat{\rho}_{ab}(m_{\kappa\pi\pi}, t') = \hat{\rho}_{ab}^{\kappa\pi\pi}(m_{\kappa\pi\pi}, t')$
 - $\blacksquare \pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
 - Incoherent effective background component for other background processes

SW PhD] Jar Agat

Handling of Incoherent Backgrounds

- Challanging to explicitly treat in partial-wave decomposition
 - ➡ Effectively taken into account

$$\rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

- Measured ρ_{ab} include background
 Explicitly model them in resonance-model fit
 - $\hat{
 ho}_{ab}(m_{K\pi\pi},t')=\hat{
 ho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t')$
 - ▶ $\pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
 - Incoherent effective background component for other background processes

Handling of Incoherent Backgrounds

- Challanging to explicitly treat in partial-wave decomposition
 - ➡ Effectively taken into account

$$\rho_{\textit{ab}} = \sum_{\textit{z}} \mathcal{T}_{\textit{a}}^{\textit{z}} \, \left[\mathcal{T}_{\textit{b}}^{\textit{z}} \right]^{*}$$

 \blacktriangleright Measured ρ_{ab} include background

Explicitly model them in resonance-model fit

$$\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi}, t')$$

- ► $\pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
- Incoherent effective background component for other background processes

[SW PhD] Jar Ag stt

Handling of Incoherent Backgrounds

- Challanging to explicitly treat in partial-wave decomposition
 - ➡ Effectively taken into account

$$\rho_{\textit{ab}} = \sum_{\textit{z}} \mathcal{T}_{\textit{a}}^{\textit{z}} \ [\mathcal{T}_{\textit{b}}^{\textit{z}}]^{*}$$

- \blacktriangleright Measured $\rho_{\textit{ab}}$ include background
- Explicitly model them in resonance-model fit

 $\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\mathrm{Bkg}}(m_{K\pi\pi}, t')$

- ▶ $\pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
- Incoherent effective background component for other background processes

- Simultaneously included 14 partial waves in resonance-model fit
- Modeled by 13 strange-meson resonance components
- Using measured intensities and interference terms (relative phases)

A+ Ay >it

Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

PDG

► $K_2^*(1430)$ well known resonance

- ρ(770) K D
- K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

- K₂^{*}(1430) signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5}) \text{ MeV}/c^2$ • $\Gamma_0 = (111 \pm 3^{+4}_{-16}) \text{ MeV}/c^2$
- In different decays
 - ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

- K₂^{*}(1430) signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5}) \text{ MeV}/c^2$ • $\Gamma_0 = (111 \pm 3^{+4}_{-16}) \text{ MeV}/c^2$
- In different decays
 - ρ(770) K D
 - K^{*}(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

- ► K₂^{*}(1430) signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5}) \text{ MeV}/c^2$ • $\Gamma_0 = (111 \pm 3^{+4}_{-16}) \text{ MeV}/c^2$
- In different decays
 - ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

PDG

- ▶ *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - ▶ J^P of K(1630) unclear

PDG

- ► *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - J^P of K(1630) unclear

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \,\text{GeV}/c^2$ region weakly affected by known analysis artifacts

Second peak at about 1.7 GeV/c²

K(1630) signal with 8.3 σ statistical significance
 Accompanied by rising phase

Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, m_{Kππ} ≤ 1.5 GeV/c² region weakly affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^{-}\pi^{-}\pi^{+}$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \,\text{GeV}/c^2$ region weakly affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, m_{Kππ} ≤ 1.5 GeV/c² region weakly affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c²
 - K(1830) signal with 5.4 σ statistical significance

- ► K(1830) parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]
- Expected K(1630) width of about 140 MeV/ c^2
Searching for Exotic Strange Mesons with $J^P = 0^-$

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
- ➡ K(1630) supernumerary signal
- Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

Searching for Exotic Strange Mesons with $J^P = 0^{-1}$

Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \blacktriangleright K(1630) supernumerary signal
 - Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

Searching for Exotic Strange Mesons with $J^P = 0^{-1}$

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
- ➡ K(1630) supernumerary signal
- Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

The Strange-Meson Spectrum

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$

AMBER: Proposal for High-Precision Strange-Meson Spectroscopy

▶ Goal: Collect $10 - 20 \times 10^6 \ K^- \pi^- \pi^+$ events using high-energy kaon beam

AMBER is open for interested collaborators to join

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$

Backup

- Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds
- 8 Resonance-Model Fit
 - Modeling the $K^-\pi^-\pi^+$ Signal
 - Modeling the $\pi^-\pi^-\pi^+$ Background
 - Modeling the Effective Background
 - χ^2 Fit Procedure
- 9 Wave-Set Selection
 - Regularization: LASSO
 - Regularization: Generalized Pareto
 - Regularization: Cauchy
 - For the $K^-\pi^-\pi^+$ Final State
- 14-Wave Resonance-Model Fit

- Searching for Exotic Strange Mesons with $J^P = 0^-$
- Partial Waves with $J^P = 2^+$ Partial Waves with $J^P = 2^-$ Partial Waves with $J^P = 4^+$

- 11 Kinematic Distribution of $K^-\pi^-\pi^+$ Events
 - Subsystem
 - $m_{\kappa^-\pi^-}$
 - t' Spectrum
 - Exclusivity
- 12 Systematic Studies of the Partial-Wave Decomposition
 - 14 Waves
 - Leakage Waves
- 13 Leakage Effect
- 14 Incoherent $\pi^-\pi^-\pi^+$ Background

- ► $J^P M^{\varepsilon}$: Spin, parity, and spin projection of X^-
- ► ξ: Isobar
- ▶ b: Bachelor particle. Here: Spectator K⁻
- L: Angular momentum between bachelor and isobar

Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau; m_{K\pi\pi}) \right|$$

Model intensity distribution

- ▶ in 5D $K^-\pi^-\pi^+$ phase-space
- for a given $(m_{\kappa\pi\pi}, t')$ cell
- as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- Ψ_a^z known, assuming the isobar model
- Wave set $\mathbb{W}_{z}(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- T_a^z extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix

$$\rho_{\textit{ab}} = \sum_{\textit{z}} \mathcal{T}_{\textit{a}}^{\textit{z}} \, \left[\mathcal{T}_{\textit{b}}^{\textit{z}} \right]^{*}$$

.2

Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau; m_{K\pi\pi}) \right|$$

- Model intensity distribution
 - ▶ in 5D $K^-\pi^-\pi^+$ phase-space
 - for a given $(m_{\kappa\pi\pi}, t')$ cell
 - as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- Ψ_a^z known, assuming the isobar model
- Wave set W_z(m_{Kππ}, t') inferred from data using regularization-based model-selection techniques

 \mathcal{T}_a^z extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix

$$\rho_{\textit{ab}} = \sum_{\textit{z}} \mathcal{T}_{\textit{a}}^{\textit{z}} \, \left[\mathcal{T}_{\textit{b}}^{\textit{z}} \right]^{*}$$

.2

Model intensity

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau; m_{K\pi\pi}) \right|$$

- Model intensity distribution
 - ▶ in 5D $K^-\pi^-\pi^+$ phase-space
 - for a given $(m_{\kappa\pi\pi}, t')$ cell
 - as incoherent sum over coherent sectors z
 - "Rank" of the partial-wave model = number of coherent sectors
- Ψ_a^z known, assuming the isobar model
- Wave set W_z(m_{Kππ}, t') inferred from data using regularization-based model-selection techniques
- \mathcal{T}_a^z extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix

$$\rho_{\textit{ab}} = \sum_{\textit{z}} \mathcal{T}_{\textit{a}}^{\textit{z}} ~ \left[\mathcal{T}_{\textit{b}}^{\textit{z}} \right]^{*}$$

.2

Approach

Effectively take into account in partial-wave decomposition by incoherently adding additional coherent sectors z

(Model background by $K^-\pi^-\pi^+$ partial waves)

- \blacktriangleright Increasing the rank of the spin-density matrix ρ_{ab}
- Signal not separated from background in partial-wave decomposition
- ➡ Partial-wave amplitudes include background
- Model signal and background contributions in resonance-model fit using more constrained signal model
 - Separate signal from background

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_{z} \left| \sum_{a \in \mathbb{W}_{z}(m_{K\pi\pi}, t')} \mathcal{T}_{a}^{z}(\tau; m_{K\pi\pi}) \right|^{2}$$

$$\rho_{ab} = \sum_{z} \mathcal{T}_{a}^{z} \left[\mathcal{T}_{b}^{z} \right]^{*}$$

True physics intensity distribution

$$\mathcal{I}$$
 $(\tau$) = $\left|\sum_{a}^{\text{waves}} \mathcal{T}_{a} \Psi_{a}(\tau)\right|^{2}$

Experimentally measured intensity distribution

$$\mathcal{I}_{ ext{measured}}(au \quad) = \quad \eta \ (au \) \mathcal{I} \ (au \)$$

- Take into account different processes p
 - Different model intensities *I*^p
 - **b** Different experimental acceptance $\eta^{\mathfrak{p}}$
 - * Formulated in terms of different phase-space variables $au^{
 m P}$
 - \blacktriangleright Jacobian terms $J(\tau^{K\pi\pi} \rightarrow \tau^{\mathfrak{p}})$ from variable transformation

True physics intensity distribution for process \mathfrak{p} Experimentally measured intensity distribution $\mathcal{I}^{\mathfrak{p}}(\tau) = \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau) \right|^{2}$ $\mathcal{I}_{\mathrm{measured}}(\tau) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau) \mathcal{I}^{\mathfrak{p}}(\tau)$

- Take into account different processes p
 - Different model intensities I^p
 - Different experimental acceptance $\eta^{\mathfrak{p}}$
 - Formulated in terms of different phase-space variables τ^{p}
 - ▶ Jacobian terms $J(\tau^{K\pi\pi} \to \tau^{p})$ from variable transformation

True physics intensity distribution for process
$$\mathfrak{p}$$
Experimentally measured intensity distribution $\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}})\right|^{2}$ $\mathcal{I}_{\mathrm{measured}}(\tau^{\kappa\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{J}(\tau^{\kappa\pi\pi} \to \tau^{\mathfrak{p}})$

- Take into account different processes p
 - Different model intensities $\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
 - Different experimental acceptance $\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
 - Formulated in terms of different phase-space variables $\tau^{\mathfrak{p}}$
 - Jacobian terms $J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$ from variable transformation

True physics intensity distribution for process \mathfrak{p}

$$\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) = \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}}) \right|^{2}$$

Experimentally measured intensity distribution

$$\mathcal{I}_{\text{measured}}(\tau^{\kappa\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{\kappa\pi\pi} \to \tau^{\mathfrak{p}})$$

- $\mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\eta^{\pi\pi\pi}$ from detector simulation

- ▶ $\eta^{\pi\pi\pi}$ computationally expensive
- ▶ Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - I^p unknown
 - Unknown background channels

True physics intensity distribution for process p

$$\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}})\right|^{2}$$

Experimentally measured intensity distribution

$$\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

- $\mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\eta^{\pi\pi\pi}$ from detector simulation

- $\eta^{\pi\pi\pi}$ computationally expensive
- Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - I^p unknown
 - Unknown background channels

True physics intensity distribution for process p

$$\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}})\right|^{2}$$

Experimentally measured intensity distribution

$$\mathcal{I}_{\text{measured}}(\tau^{\kappa_{\pi\pi}}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{\kappa_{\pi\pi}} \to \tau^{\mathfrak{p}})$$

• $\mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis

• $\eta^{\pi\pi\pi}$ from detector simulation

- $\eta^{\pi\pi\pi}$ computationally expensive
- Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - $\blacktriangleright \mathcal{I}^{\mathfrak{p}}$ unknown
 - Unknown background channels

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \Psi^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}^{\mathfrak{p}}_{a} \Psi^{K\pi\pi}_{a}(\tau^{K\pi\pi}) \right|^{2}$$

Experimentally measured intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{\mathbf{p}} \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathbf{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

$$\mathcal{I}_{ ext{measured}}(au^{K\pi\pi}) = \eta^{K\pi\pi}(au^{K\pi\pi})\mathcal{I}(au^{K\pi\pi})$$

- ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ► Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

- ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ► Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

- ls the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ► Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{K\pi\pi}_{a}(\tau^{K\pi\pi}) \right|^{2}$$

- ▶ Is the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - ➡ Automatic wave-set selection using model-selection techniques

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{K\pi\pi}_{a}(\tau^{K\pi\pi}) \right|^{2}$$

Experimentally measurable quantities are spin-density matrix elements

- \blacktriangleright Transition amplitudes \mathcal{T}_a^p are only effective parameters
- \blacktriangleright Cannot determine \mathcal{T}_a^p of individual processes
- ➡ Cannot separate different processes

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process \mathfrak{p} by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{\mathfrak{p}}_{a}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}^{\mathfrak{p}}_{a} \mathcal{\Psi}^{K\pi\pi}_{a}(\tau^{K\pi\pi}) \right|^{2}$$

- Large number of fit parameters: $N_{\text{para}} = N_{\text{r}}(2N_{\text{waves}} N_{\text{r}})$
- Sufficient rank of spin-density matrix must be determined
 - ▶ Rank two needed to describe pure $\pi^-\pi^-\pi^+$ Monte Carlo sample using $K^-\pi^-\pi^+$ partial waves
 - Used rank three to model $K^-\pi^-\pi^+$ sample

- Spin-density matrix $\rho_{ab}(m_{K\pi\pi}, t')$ measured in partial-wave decomposition
- Model spin-density matrix in resonance-model fit

$$\hat{
ho}_{ab}(m_{K\pi\pi},t')=\hat{
ho}_{ab}^{K\pi\pi}(m_{K\pi\pi},t')+\hat{
ho}_{ab}^{3\pi}(m_{K\pi\pi},t')+\hat{
ho}_{ab}^{
m Bkg}(m_{K\pi\pi},t')$$

$$\hat{\mathcal{T}}_a^z(m_{K\pi\pi},t') = \sum_{k\in\mathbb{S}_a} \mathcal{K}(m_{K\pi\pi},t')^k \mathcal{C}_a^{K\pi\pi}(t') \mathcal{D}_k(m_{K\pi\pi};\zeta_k)$$

- Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)\tilde{q}_k^2(m_{K\pi\pi})}$
- "Coupling amplitudes": ${}^{k}C_{a}^{z}(t')$
 - Independent coupling amplitude for each t' bin
- Kinematic factor $K(m_{K\pi\pi}, t')$
- Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k\in\mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Dynamic functions $\mathcal{D}_k(m_{\kappa\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)\tilde{q}_k^2(m_{K\pi\pi})}$
- "Coupling amplitudes": ${}^{k}C_{a}^{z}(t')$
 - Independent coupling amplitude for each t' bin
- Kinematic factor $K(m_{K\pi\pi}, t')$
- Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k\in\mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)\tilde{q}_k^2(m_{K\pi\pi})}$
- "Coupling amplitudes": ${}^{k}C_{a}^{z}(t')$
 - Independent coupling amplitude for each t' bin
- Kinematic factor $K(m_{K\pi\pi}, t')$
- Coherently summed over all assumed model components

$$\hat{\mathcal{T}}_{a}^{z}(m_{K\pi\pi},t') = \sum_{k \in \mathbb{S}_{a}} \mathcal{K}(m_{K\pi\pi},t')^{k} \mathcal{C}_{a}^{K\pi\pi}(t') \mathcal{D}_{k}(m_{K\pi\pi};\zeta_{k})$$

- Dynamic functions $\mathcal{D}_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $\mathcal{D}_k^{\mathrm{NR}}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} m_{\mathrm{thr}})^{a_k} e^{-b(c_k)\tilde{q}_k^2(m_{K\pi\pi})}$
- "Coupling amplitudes": ${}^{k}C_{a}^{z}(t')$
 - Independent coupling amplitude for each t' bin
- Kinematic factor $K(m_{K\pi\pi}, t')$
- Coherently summed over all assumed model components

3π spin-density matrix

$$\hat{\rho}_{ab}^{\pi\pi\pi}(m_{K\pi\pi},t') = \left| \mathcal{C}^{\pi\pi\pi} \right|^2 \rho_{ab}^{\pi\pi\pi}(m_{K\pi\pi},t')$$

• $\rho_{ab}^{\pi\pi\pi}(m_{K\pi\pi}, t')$ obtained from PWD of $\pi^-\pi^-\pi^+$ pseudodata sample

- \blacktriangleright $m_{K\pi\pi}$ dependence fixed
- t' dependence fixed
- Rel. strength between partial waves fixed (freed in a study)
- One global real-valued yield parameter $|C^{\pi\pi\pi}|^2$

Background spin-density matrix

- ▶ Additional incoherent contribution form other processes: $K^-K^-K^+$, ...
- ► Transition amplitudes modeled by non-resonant parameterizations for each partial wave $\hat{\mathcal{T}}_{a}^{\text{eBKG}}(m_{K\pi\pi}, t') = K(m_{K\pi\pi}, t') \ \mathcal{C}_{a}^{\text{eBKG}}(t') \mathcal{D}_{k_{a}}^{\text{eBKG}}(m_{K\pi\pi}; a_{k_{a}}, c_{k_{a}})$

- \blacktriangleright χ^2 fit of the real and imaginary parts of the spin-density matrix
 - Taking into account correlations between spin-density matrix elements
 - Shape parameters (m_0 , Γ_0 , ...) and coupling amplitudes are free parameters
- For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.
- Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)
- **>** The best result is the one which yielded the smallest χ^2 value

- $\blacktriangleright~\chi^2$ fit of the real and imaginary parts of the spin-density matrix
 - Taking into account correlations between spin-density matrix elements
 - ▶ Shape parameters (m_0 , Γ_0 , ...) and coupling amplitudes are free parameters
- ► For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.
- Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)
- ▶ The best result is the one which yielded the smallest χ^2 value

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \left| \sum_{a \in \mathbb{W}(m_{K\pi\pi}, t')} \mathcal{T}_{a}(m_{K\pi\pi}, t') \Psi_{a}(\tau; m_{K\pi\pi}) \right|^{2}$$

Challenge: Find the "best" set of waves that describes the data

- If the wave set is too large
 - ➡ Starting to describe statistical fluctuations
- If waves that contribute to the data are missing
 - ➡ Intensity can be wrongly attributed to other waves
 - ➡ Model leakage

Infer wave set from data

- Systematically construct large set of allowed partial waves
 - ➡ "Wave pool"
- Fit wave pool to data
 - Impose penalty on $|\mathcal{T}_a|^2 \Rightarrow$ regularization
 - Suppress insignificant waves
- Select waves that significantly contribute to data
 - "Best" subset of waves that describe the data

▶ $\pi^{-}\pi^{-}\pi^{+}$ Monte Carlo mock data set with 126 partial waves

- Massive overfitting
- Almost all waves pick up intensity

Courtesy F. Kaspar, TUM

Fitting wave pool of 753 waves

Wave-Set Selection

- ▶ $\pi^{-}\pi^{-}\pi^{+}$ Monte Carlo mock data set with 126 partial waves
- Fitting wave pool of 753 waves
 - ➡ Massive overfitting
 - ➡ Almost all waves pick up intensity

Courtesy F. Kaspar, TUM

$$\ln \mathcal{L}_{\rm fit} = \ln \mathcal{L}_{\rm extended} + \sum_{a}^{\rm waves} \ln \mathcal{L}_{\rm reg}(|\mathcal{T}_a|; \{c_{\rm para}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_a|;\lambda) = -\lambda |\mathcal{T}_a|$$

- Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$

 $[\]frac{1}{2}$ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

$$\ln \mathcal{L}_{\rm fit} = \ln \mathcal{L}_{\rm extended} + \sum_{a}^{\rm waves} \ln \mathcal{L}_{\rm reg}(|\mathcal{T}_a|; \{c_{\rm para}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{a}|;\lambda) = -\lambda |\mathcal{T}_{a}|$$

- Maximum at $|\mathcal{T}_a| = 0$
- ► Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$

 $\frac{1}{2}$ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

$$\ln \mathcal{L}_{\rm fit} = \ln \mathcal{L}_{\rm extended} + \sum_{a}^{\rm waves} \ln \mathcal{L}_{\rm reg}(|\mathcal{T}_a|; \{c_{\rm para}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{a}|;\lambda) = -\lambda |\mathcal{T}_{a}|$$

- Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$

$$\mathcal{T}_{\rm a}| \rightarrow \sqrt{|\mathcal{T}_{\rm a}|^2 + \varepsilon}$$

Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996)
 Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

 $\lambda = 0.3$ $arepsilon = 10^{-5}$

- Bias also on large transition amplitudes
- Some additional waves
- Some waves missing

Courtesy F. Kaspar, TUM

S. Wallner

Generalized Pareto¹

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{\boldsymbol{a}}|; \Gamma, \zeta) = -\frac{1}{\zeta} \ln \left[1 + \zeta \frac{|\mathcal{T}_{\boldsymbol{a}}|}{\Gamma} \right]$$

- Wave intensities spread over orders of magnitudes
- Use logarithmic prior
 - ➡ Heavy-tailed
 - ➡ Less bias on large waves
- ▶ LASSO-like for $|\mathcal{T}_a| \rightarrow 0$
- ► "Smoothing" at $|\mathcal{T}_a| = 0$ $|\mathcal{T}_a| \rightarrow \sqrt{|\mathcal{T}_a|^2 + \varepsilon}$

¹ Artin Armagan, David B. Dunson, and Jaeyong Lee. "Generalized double Pareto shrinkage". In: Statistica Sinica (2013). doi: 10.5705/ss.2011.048

- Less bias on large transition amplitudes
- \blacktriangleright Clear kink in intensity distribution to smoothing scale $\ \Rightarrow$ Selection
- Less additional waves
- Some small waves missing

Courtesy F. Kaspar, TUM

"Cauchy"

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{a}|;\Gamma) = -\ln \left[1 + \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}}\right]$$

- Logarithmic prior
- ▶ L2-like for $|\mathcal{T}_a| \to 0$

- Less bias on large transition amplitudes
- Clear kink in intensity distribution
- Few additional waves
- Few small waves missing

Courtesy F. Kaspar, TUM

S. Wallner

Wave pool

- ▶ Spin $J \le 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]_{S}^{K\pi}$, $[K\pi]_{S}^{K\eta}$, $K^{*}(892)$, $K^{*}(1680)$, $K_{2}^{*}(1430)$, $K_{3}^{*}(1780)$
 - $[\pi\pi]_{s}$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

 \Rightarrow "Wave pool" of 596 waves

"only" 720 k events

Wave pool

- ▶ Spin $J \le 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]_{S}^{K\pi}$, $[K\pi]_{S}^{K\eta}$, $K^{*}(892)$, $K^{*}(1680)$, $K_{2}^{*}(1430)$, $K_{3}^{*}(1780)$
 - $[\pi\pi]_{s}$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

 \Rightarrow "Wave pool" of 596 waves

"only" 720 k events

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{a}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{a}|^{2}}{arGamma_{a}^{2}}
ight]$$

- Use Cauchy regularization
- Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N_a of observed events

 $\Gamma_{s} = \frac{\Gamma}{\sqrt{\eta_{s}}} \Rightarrow \frac{|\mathcal{T}_{s}|^{2}}{\Gamma_{s}^{2}} = \frac{\bar{N}_{s}}{\Gamma^{2}}$

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{\mathsf{a}}|; arGamma) = -\ln \left[1 + rac{|\mathcal{T}_{\mathsf{a}}|^2}{arGamma_{\mathsf{a}}^2}
ight]$$

- Use Cauchy regularization
- Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N
 _a of observed events

$$\Gamma_{a} = \frac{\Gamma}{\sqrt{\bar{\eta}_{a}}} \Rightarrow \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = \frac{\bar{N}_{a}}{\Gamma^{2}}$$

 \blacktriangleright Γ is a universal parameter

COMPASS

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{\mathsf{a}}|; arGamma) = -\ln \left[1 + rac{|\mathcal{T}_{\mathsf{a}}|^2}{arGamma_{\mathsf{a}}^2}
ight]$$

- Use Cauchy regularization
- Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N
 _a of observed events

$$\Gamma_{a} = \frac{\Gamma}{\sqrt{\bar{\eta}_{a}}} \Rightarrow \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = \frac{\bar{N}_{a}}{\Gamma^{2}}$$

 \blacktriangleright Γ is a universal parameter

COMPASS

Regularization

$$\mathsf{n}\,\mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{\mathsf{a}}|;\Gamma) = -\ln\left[1+rac{|\mathcal{T}_{\mathsf{a}}|^2}{arLambda_{\mathsf{a}}^2}
ight]$$

- Use Cauchy regularization
- Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number N
 _a of observed events

$$\Gamma_{a} = \frac{\Gamma}{\sqrt{\bar{\eta}_{a}}} \Rightarrow \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = \frac{\bar{N}_{a}}{\Gamma^{2}}$$

 \blacktriangleright Γ is a universal parameter

Imposing continuity of the wave set

- Wave-set inferred independently for each $(m_{K\pi\pi}, t')$ cell
- Impose continuity of the wave set in $m_{K\pi\pi}$ by adding additional regularization term

$$\ln \mathcal{L}_{\text{cont}}(\{\mathcal{T}_{a}(m_{K\pi\pi},t')\};\lambda) = \sum_{j=i-3}^{j=i+3} \lambda \left|\mathcal{T}_{a}(m_{K\pi\pi},t')(m_{K\pi\pi}^{j+1}) - \mathcal{T}_{a}(m_{K\pi\pi},t')(m_{K\pi\pi}^{j})\right|^{2},$$

which suppresses fluctuations among neighboring $m_{K\pi\pi}$ bins

Wave-set size

- ▶ 5 to 90 waves per $(m_{K\pi\pi}, t')$ cell
- Larger wave set for larger binning in $m_{K\pi\pi}$
- Larger wave set in t' bins with more events

- Selection of large signals
- as well as of signals at per-mil level

- Selection of large signals
- as well as of signals at per-mil level

Searching for Exotic Strange Mesons with $J^P = 0^-$

PDG

- ▶ *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - \blacktriangleright J^P of K(1630) unclear

Searching for Exotic Strange Mesons with $J^P = 0^-$

PDG

- ► *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \,\mathrm{MeV}/c^2$
 - J^P of K(1630) unclear

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 Accompanied by rising phase
- Weak signal at about 2.0 GeV/c²

K(1830) signal with 5.4 σ statistical significance

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about $1.7 \,\mathrm{GeV}/c^2$
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c²
 - K(1830) signal with 5.4 σ statistical significance

- ► K(1830) parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]
- Realistic K(1630) width of about 140 MeV/ c^2

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
- ➡ K(1630) supernumerary signal
- Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

Searching for Exotic Strange Mesons with $J^P = 0^-$

Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - \blacktriangleright K(1630) supernumerary signal
 - Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)
Searching for Exotic Strange Mesons with $J^P = 0^-$

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ➡ K(1630) supernumerary signal
 - Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

Searching for Exotic Strange Mesons with $J^P = 0^-$

Searching for Exotic Strange Mesons with $J^P = 0^-$

500 0**-→**ρK ACCMOR 400 $K^{-}\pi^{-}\pi^{+}$ from ACCMOR ≥ 300 ¥ ▶ Potential K(1630) signal already in ACCMOR analysis / 20 Events 200 100 1 00 1.20 1 40 1.60 1.80 MKTT

Limited by kinematic range

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Searching for Exotic Strange Mesons with $J^P = 0^-$

$K^-\pi^-\pi^+$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

$K^{-}\pi^{-}\pi^{+}$ from LHCb

- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above $1.6 \,\mathrm{GeV}/c^2$
 - Limited by kinematic range

Searching for Exotic Strange Mesons with $J^P = 0^-$

$K^-\pi^-\pi^+$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

$K^{-}\pi^{-}\pi^{+}$ from LHCb

- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above $1.6 \,\mathrm{GeV}/c^2$
 - Limited by kinematic range

PDG

► $K_2^*(1430)$ well known resonance

- ▶ Signal in K^{*}₂(1430) mass region
- In different decays
 - ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data

- ▶ Signal in K^{*}₂(1430) mass region
- In different decays
 - ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data

Cleaner signal in COMPASS data

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Partial Waves with $J^P = 2^+$

- $K_2^*(1430)$ parameters consistent with previous observations
- ▶ Better agreement with PDG average values for neutral $K_2^*(1430)$

Partial Waves with $J^P = 2^-$

PDG

- Established $K_2(1770)$ and $K_2(1820)$
- \blacktriangleright K₂(2250) need further confirmation

A+ Ag>it

- ▶ Simultaneously fit 4 waves with $J^P = 2^-$
- 1.8 GeV/c² peak modeled by K₂(1770), K₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity spectra and large phase motions among 2⁻ waves

A+ Ag>it

- Simultaneously fit 4 waves with $J^P = 2^-$
- 1.8 GeV/c² peak modeled by K₂(1770), K₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity spectra and large phase motions among 2⁻ waves

Partial Waves with $J^P = 2^-$

$K_2(1770)$ and $K_2(1820)$

- ▶ Two states were considered by only three measurements ACCMOR, LASS, LHCb
- Only LHCb measurement could confirm two states (3 σ statistical significance)
- We observe two sates with 11σ statistical significance

Partial Waves with $J^P = 2^-$

*K*₂(2250)

- Studied so far mainly in $\overline{\overline{A}}^{\circ}\overline{p}$ final states
- First simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$
- Resonance parameters consistent with previous observations

Partial Waves with $J^P = 2^-$

Partial Waves with $J^P = 2^-$

PDG

Signal K₄^{*}(2045) signal in K^{*}(892) π and ρ(770) K decays

Signal K₄^{*}(2045) signal in K^{*}(892) π and ρ(770) K decays

A+ Ag >it

- Imperfect description of magnitude of intensity,
- Also, real and imaginary parts of interference terms described well, including their magnitude
- ▶ Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- ▶ Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- ▶ Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

- Imperfect description of magnitude of intensity, , while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\operatorname{Rank}[\rho_{ab}] > 1$ $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data
- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

▶ Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

• Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

Subsystem

▶ Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

 $m_{K^-\pi^-} \, [{\rm GeV}/c^2]$

Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Systematic Studies of the Partial-Wave Decomposition $_{\mbox{\tiny Leakage Waves}}$

Systematic Studies of the Partial-Wave Decomposition $_{\mbox{\tiny Leakage Waves}}$

Systematic Studies of the Partial-Wave Decomposition $_{\mbox{\tiny Leakage Waves}}$

Systematic Studies of the Partial-Wave Decomposition $_{\mbox{\scriptsize Leakage Waves}}$

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) \pi D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) \pi D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ► Non-negligible $\pi^{-}\pi^{-}\pi^{+}$ background in $K^{-}\pi^{-}\pi^{+}$ sample of about 7 %
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - **Expect small contamination from beam** π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ► Non-negligible $\pi^{-}\pi^{-}\pi^{+}$ background in $K^{-}\pi^{-}\pi^{+}$ sample of about 7 %
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ► Non-negligible $\pi^{-}\pi^{-}\pi^{+}$ background in $K^{-}\pi^{-}\pi^{+}$ sample of about 7 %
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7%
 - ▶ Dominant background in $K^-\pi^-\pi^+$ sample

• Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $\mathcal{K}^-\pi^-\pi^-$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

• Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^-$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted π⁻π⁻π⁺ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

• Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
 - Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

• Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted π⁻π⁻π⁺ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
 - Study $\pi^{-}\pi^{-}\pi^{+}$ background in individual $K^{-}\pi^{-}\pi^{+}$ partial waves

- Significant contribution to waves with $\rho(770)$ isobar
- ▶ $\pi^{-}\pi^{-}\pi^{+}$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \ K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with f₂(1270) and K^{*}₂(1430) isobars
- No contribution to flat wave

- Significant contribution to waves with $\rho(770)$ isobar
- ▶ $\pi^{-}\pi^{-}\pi^{+}$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with f₂(1270) and K₂^{*}(1430) isobars
- No contribution to flat wave

- Significant contribution to waves with $\rho(770)$ isobar
- ▶ $\pi^{-}\pi^{-}\pi^{+}$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \text{ K } D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with f₂(1270) and K₂*(1430) isobars
- No contribution to flat wave

- Significant contribution to waves with $\rho(770)$ isobar
- ▶ $\pi^{-}\pi^{-}\pi^{+}$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \text{ K } D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with f₂(1270) and K₂*(1430) isobars
- No contribution to flat wave

 $K^{-}\pi^{-}\pi^{+}$ data. $\pi^{-}\pi^{-}\pi^{+}$ pseudo data

- Significant contribution to waves with $\rho(770)$ isobar
- ▶ $\pi^{-}\pi^{-}\pi^{+}$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) \text{ K } D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with f₂(1270) and K₂*(1430) isobars
- No contribution to flat wave

