Spin density matrix elements of the $\Delta^{++}(1232)$

Vanamali Shastry

Indiana University
with V. Mathieu, G. Montaña, A. Szczepaniak, and others

1 June, 2024

Understanding the photoproduction of mesonic and baryonic resonances

- Single π-photoproduction is well understood (Gloria's talk, Tue)
- 2π-photoproduction can be a ρ production or $\pi \Delta$, or Deck process.
- $\pi \Delta$ production
- π exchange process is to be understood (gauge invariance).
- What is the physics behind the photoproduction of $\pi \Delta$?
- Understand the lower vertex.
- Available observables: $\frac{d \sigma}{d t}, \Sigma, \rho^{0,1,2}$.

- SDMEs are coefficients of angular distributions (of final proton) and hence can be extracted from the intensity distribution [1].
- Theoretically, SDMEs give insights into the production process.

Understanding the photoproduction of mesonic and baryonic resonances

- Single π-photoproduction is well understood (Gloria's talk, Tue)
- 2π-photoproduction can be a ρ production or $\pi \Delta$, or Deck process.
- $\pi \Delta$ production
- π exchange process is to be understood (gauge invariance).
- What is the physics behind the photoproduction of $\pi \Delta$?
- Understand the lower vertex.
- Available observables: $\frac{d \sigma}{d t}, \Sigma, \rho^{0,1,2}$.

- SDMEs are coefficients of angular distributions (of final proton) and hence can be extracted from the intensity distribution [1].
- Theoretically, SDMEs give insights into the production process.

The $\vec{\gamma} p \rightarrow \pi \Delta \rightarrow \pi(p \pi)$ amplitude is given by,

$$
\begin{equation*}
A_{\lambda_{\gamma}, \lambda_{1}, \lambda_{2}}(\Omega)=\sum_{\lambda_{\Delta}} T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}(s, t) D_{\lambda_{\Delta}, \lambda_{2}}^{3 / 2 *}(\Omega) \tag{1}
\end{equation*}
$$

The intensity is given by,

$$
\begin{equation*}
I\left(\Omega, \Phi, P_{\gamma}\right)=\frac{\kappa}{2} \sum_{\lambda_{\gamma}^{(\prime)}, \lambda_{1}, \lambda_{2}} A_{\lambda_{\gamma}, \lambda_{1}, \lambda_{2}}(\Omega) \hat{\rho}_{\lambda_{\gamma}, \lambda_{\gamma}^{\prime}} A_{\lambda_{\gamma}^{\prime}, \lambda_{1} \lambda_{2}}^{*}(\Omega) \tag{2}
\end{equation*}
$$

where κ is the phase space factor. $\Omega=(\theta, \phi)$ are the Δ-decay angles.

$$
\begin{align*}
I(\Omega, \Phi) & =2 N\left\{\rho_{33}^{0} \sin ^{2} \theta+\rho_{11}^{0}\left(\frac{1}{3}+\cos ^{2} \theta\right)-\frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^{0} \sin 2 \theta \cos \phi-\frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^{0} \sin ^{2} \theta \cos 2 \phi\right. \\
& -P_{\gamma} \cos 2 \Phi\left[\rho_{33}^{1} \sin ^{2} \theta+\rho_{11}^{1}\left(\frac{1}{3}+\cos ^{2} \theta\right)-\frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^{1} \sin 2 \theta \cos \phi-\frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^{1} \sin ^{2} \theta \cos 2 \phi\right] \\
& \left.-P_{\gamma} \sin 2 \Phi\left[\frac{2}{\sqrt{3}} \operatorname{Im} \rho_{31}^{2} \sin 2 \theta \sin \phi+\frac{2}{\sqrt{3}} \operatorname{Im} \rho_{3-1}^{2} \sin ^{2} \theta \sin 2 \phi\right]\right\} \tag{3}
\end{align*}
$$

where the SDMEs are defined as,

$$
\begin{align*}
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{0} & =\frac{1}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{4}\\
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{1} & =\frac{1}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{-\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{5}\\
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{2} & =\frac{i}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} \lambda_{\gamma} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{-\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{6}
\end{align*}
$$

$$
\begin{array}{lll}
\operatorname{Tr}\left(\rho^{0}\right)=1 & \operatorname{Tr}\left(\rho^{1}\right)=\Sigma & \operatorname{Tr}\left(\left(\rho^{0,1,2}\right)^{2}\right) \leq\left(\operatorname{Tr}\left(\rho^{0,1,2}\right)\right)^{2} \\
\rho_{\lambda_{\Delta} \lambda_{\Delta}}^{0}>0 & 0<\rho_{11}^{0}<0.5 & \tag{8}
\end{array}
$$

where the SDMEs are defined as,

$$
\begin{align*}
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{0} & =\frac{1}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{4}\\
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{1} & =\frac{1}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{-\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{5}\\
\rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{2} & =\frac{i}{2 N} \sum_{\lambda_{\gamma} \lambda_{1}} \lambda_{\gamma} T_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{-\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}^{\prime}}^{*} \tag{6}
\end{align*}
$$

$$
\begin{array}{lll}
\operatorname{Tr}\left(\rho^{0}\right)=1 & \operatorname{Tr}\left(\rho^{1}\right)=\Sigma & \operatorname{Tr}\left(\left(\rho^{0,1,2}\right)^{2}\right) \leq\left(\operatorname{Tr}\left(\rho^{0,1,2}\right)\right)^{2} \\
\rho_{\lambda_{\Delta} \lambda_{\Delta}}^{0}>0 & 0<\rho_{11}^{0}<0.5 & \tag{8}
\end{array}
$$

- GlueX operates at $E_{\gamma} \sim 9 \mathrm{GeV}$
- Large-s \rightarrow exponential fall-off
- Residual (polynomial) behavior

$$
\begin{equation*}
\frac{d \sigma}{d t}=\beta^{R}(t) s^{2 \alpha_{\text {eff }}-2} \tag{9}
\end{equation*}
$$

Hallmark of Regge exchange

- Two distinct trajectories (small- t and large-t).
- Similar cross-section as single pion photoproduction at large- t

Figure: $\pi \Delta$ photoproduction cross section as reported in Ref. [2].

- Simple model; exchange of π, ρ, b_{1}, a_{2}
- Upper and lower vertices factorize
- The phases of the amplitudes are fixed by the Regge theory.
- Poor man's absorption (PMA) model for π-exchange [3].

Figure: The t-channel photoproduction process of $\pi \Delta$. U and L are the upper and lower vertices.

General form of the helicity amplitude is [4]

$$
\begin{align*}
& T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}(s, t)=\sum_{\times}\left[\xi_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}^{\times}(s, t)\right] ; \quad \times \in\left\{\pi, \rho, b_{1}, a_{2}\right\} \tag{10}\\
& T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}^{\times}(s, t)=\sqrt{-t}\left|\lambda_{\gamma}\right| \sqrt{-t}\left|\lambda_{1}-\lambda_{\Delta}\right| \tag{11}\\
& \hat{\beta}_{\lambda \gamma}^{\times, U}(t) \hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{\times, L}(t) \mathcal{P}_{R}^{\times}(s, t) \mathcal{S}_{\times}(t)
\end{align*}
$$

- $\xi_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}}$ is the half-angle factor.
- Like exchanges take the same form of the vertex (exchange degeneracy):

$$
\hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{\pi, L}(t)=\hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{b_{1}, L}(t) ; \quad \hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{\rho, L}(t)=\hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{a_{2}, L}(t)
$$

- Overall (exponential + polynomial) suppression factors for each exchange (also removes wrong signature zeroes)
- Factorization leads to separation of parity relations

$$
\begin{align*}
& \beta_{-\lambda_{\gamma}}^{\pi, U}=-\beta_{\lambda_{\gamma}}^{\pi, U}, \quad \beta_{-\lambda_{\gamma}}^{b_{1}, U}=-\beta_{\lambda_{\gamma}}^{b_{1}, U}, \quad \beta_{-\lambda_{\gamma}}^{\rho, U}=\beta_{\lambda_{\gamma}}^{\rho, U}, \quad \beta_{-\lambda_{\gamma}}^{a_{2}, U}=\beta_{\lambda_{\gamma}}^{a_{2}, U} \tag{12}\\
& \beta_{-\lambda_{1},-\lambda_{\Delta}}^{\pi, L}=(-1)^{\lambda_{1}-\lambda_{\Delta}} \beta_{\lambda_{1}, \lambda_{\Delta}}^{\pi, L}, \quad \beta_{-\lambda_{1},-\lambda_{\Delta}}^{\rho, L}=-(-1)^{\lambda_{1}-\lambda_{\Delta}} \beta_{\lambda_{1}, \lambda_{\Delta}}^{\rho, L} \tag{13}
\end{align*}
$$

JPAC model [4]

- Residues are polynomials in t
- Residues constructed phenomenologically using covariant Lagrangians (possible sign ambiguity)
- Upper vertex coupling constants fixed using decay widths
- Lower vertex is the same for all exchanges of a given naturality because of exchange degeneracy
- Lower vertex: $\pi p \Delta$ coupling constant is fixed from the $\Delta \rightarrow p \pi$ decay width, $\rho p \Delta$ coupling constants fitted to the scattering data
Irving \& Worden Model (IWM) [5]
- Residues are constants
- All vertices fixed phenomenologically

Absorption

- Additional corrections to Regge exchange
- Experimental evidences in the form of
- Non-zero polarization of $\pi N \rightarrow \pi N$ scattering
- Forward scattering cross section of π-photoproduction (Gloria's talk on day 1)), $n p \rightarrow p n$, etc
- Peripheriality of π-exchange reactions
- SDMEs and BSA of $\pi \Delta$ photoproduction (more later)
- "Effective" way of taking care of multiple exchanges (FSI, etc).

$$
\begin{align*}
& T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}(s, t)=\sum_{\times}\left[\xi_{\lambda_{\gamma} \lambda_{1} \lambda_{\Delta}} T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}^{\times}(s, t)\right] ; \quad \times \in\left\{\pi, \rho, b_{1}, a_{2}\right\} \tag{14}\\
& T_{\lambda_{\gamma}, \lambda_{1}, \lambda_{\Delta}}^{\times}(s, t)=\sqrt{-t}\left|\lambda_{\gamma}\right| \sqrt{-t}\left|\lambda_{1}-\lambda_{\Delta}\right| \tag{15}\\
& \hat{\beta}_{\lambda_{\gamma}}^{\times, U}(t) \hat{\beta}_{\lambda_{1}, \lambda_{\Delta}}^{\times, L}(t) \mathcal{P}_{R}^{\times}(s, t) \mathcal{S}_{\times}(t)
\end{align*}
$$

- The $\sqrt{-t}$ factors arise from angular mometum and the model
- The model factors for unnatural exchange are evaluated at $t=m_{\pi}^{2} \rightarrow \mathrm{PMA}$.

Cross sections for $\pi \Delta$ photoproduction from JPAC model compared to data (from [4]).

Reflectivity basis

- Reflectivity operation involves 180° rotation about the " y-axis" + parity inversion \Rightarrow inversion of the " y-axis" $[6,7]$.
- The amplitude in the reflectivity basis can be defined as (valid for $\gamma p \rightarrow \pi \Delta$):

$$
\begin{equation*}
T_{\lambda_{1}, \lambda_{\Delta}}^{(\epsilon)}(s, t)=\frac{1}{2}\left(T_{1, \lambda_{1}, \lambda_{\Delta}}(s, t)+\epsilon T_{-1, \lambda_{1}, \lambda_{\Delta}}(s, t)\right) \tag{16}
\end{equation*}
$$

- The SDMEs take the form,

$$
\begin{align*}
& \rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{0}=\frac{1}{N} \sum_{\lambda_{1}}\left[T_{\lambda_{1}, \lambda_{\Delta}}^{(+)} T_{\lambda_{1}, \lambda_{\Delta}^{\prime}}^{(+)^{*}}+T_{\lambda_{1}, \lambda_{\Delta}}^{(-)} T_{\lambda_{1}, \lambda_{\Delta}^{\prime}}^{(-) *}\right] \tag{17}\\
& \rho_{\lambda_{\Delta} \lambda_{\Delta}^{\prime}}^{1}=\frac{1}{N} \sum_{\lambda_{1}}\left[T_{\lambda_{1}, \lambda_{\Delta}}^{(+)} T_{\lambda_{1}, \lambda_{\Delta}^{\prime}}^{(+)^{*}}-T_{\lambda_{1}, \lambda_{\Delta}}^{(-)} T_{\lambda_{1}, \lambda_{\Delta}^{\prime}}^{(-) *}\right] \tag{18}
\end{align*}
$$

- The $\epsilon=(-)+$ amplitudes are dominated by (un)natural parity meson exchange.

Natural and Unnatural amplitudes

$$
\begin{array}{llll}
N_{-1}=T_{\frac{1}{2} \frac{3}{2}}^{(+)} & N_{0}=T_{\frac{1}{2} \frac{1}{2}}^{(+)} & N_{1}=T_{\frac{1}{2}-\frac{1}{2}}^{(+)} & N_{2}=T_{\frac{1}{2}-\frac{3}{2}}^{(+)} \\
U_{-1}=T_{\frac{1}{2} \frac{3}{2}}^{(-)} & U_{0}=T_{\frac{1}{2} \frac{1}{2}}^{(-)} & U_{1}=T_{\frac{1}{2}-\frac{1}{2}}^{(-)} & U_{2}=T_{\frac{1}{2}-\frac{3}{2}}^{(-)} \tag{20}
\end{array}
$$

$\lambda_{1}=-\frac{1}{2}$ amplitudes are related via parity.
Eg:

$$
\begin{align*}
N_{0} & =\left(\beta_{1}^{\rho} S_{\rho} \mathcal{P}_{\rho}-\beta_{1}^{a_{2}} S_{a_{2}} \mathcal{P}_{a_{2}}\right) \sqrt{-t} \beta_{\frac{1}{2} \frac{1}{2}}^{\rho} \tag{21}\\
N_{1} & =\left(\beta_{1}^{\rho} S_{\rho} \mathcal{P}_{\rho}-\beta_{1}^{a_{2}} S_{a_{2}} \mathcal{P}_{a_{2}}\right)(-t) \beta_{\frac{1}{2}-\frac{1}{2}}^{\rho} \\
& +\frac{1}{2}\left(-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi}+\beta_{1}^{b_{1}} \sqrt{-t} S_{b_{1}} \mathcal{P}_{b_{1}}\right)\left(-m_{\pi}^{2}\right)\left(1-\frac{t}{m_{\pi}^{2}}\right) \beta_{\frac{1}{2}-\frac{1}{2}}^{\pi} \tag{22}\\
U_{0} & =\left(-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi}+\beta_{1}^{b_{1} \sqrt{-t}} S_{b_{1}} \mathcal{P}_{b_{1}}\right) \sqrt{-t} \beta_{\frac{1}{2} \frac{1}{2}}^{\pi} \tag{23}\\
U_{1} & =\frac{1}{2}\left(-\beta_{1}^{\pi} S_{\pi} \mathcal{P}_{\pi}+\beta_{1}^{b_{1}} \sqrt{-t} S_{b_{1}} \mathcal{P}_{b_{1}}\right)\left(-m_{\pi}^{2}\right)\left(1+\frac{t}{m_{\pi}^{2}}\right) \beta_{\frac{1}{2}-\frac{1}{2}}^{\pi} \tag{24}
\end{align*}
$$

- Absorption correction to natural exchanges - No pole contributions
- Negative reflectivity amplitudes are purely π and b_{1} exchanges
- Positive reflectivity amplitudes are ρ and a_{2} exchanges, and get absorption corrections from π and b_{1} exchanges.

Figure: The natural exchange amplitudes and their ρ and a_{2} components from the JPAC model compared with IWM.

Figure: SDMEs in the helicity frame compared to the GlueX data (F. Afzal (GlueX Collaboration), private communication. Publication in preparation).

Sign 1: $\beta_{\frac{1}{2}, \frac{3}{2}}^{\times, L}$ and $\beta_{\frac{1}{2},-\frac{1}{2}}^{\times, L}$ as given in [4] Sign 2: Signs of $\beta_{\frac{1}{2}, \frac{3}{2}}^{\times, L}$ and $\beta_{\frac{1}{2},-\frac{1}{2}}^{\times, L}$ flipped

Figure: Natural and unnatural cominations of SDMEs in the helicity frame.

The non-zero vaule of ρ_{33}^{N} at small- t indicates the presence of absorption corrections.

- A simplistic model that assumes Regge exchange and factorization
- Explains the general features the SDMEs of $\pi \Delta$ photoproduction; needs fine tuning to mathc the data.
- Diagonal elements of $\rho^{0,1}$ can be interpreted as sums of production probabilities
- Δ is produced dominantly in the helicity $\pm 1 / 2(\pm 3 / 2)$ configurration at small- t (large- t)
- Relative phases of helicity amplitudes can be fixed from SDMEs
- All amplitudes except the natural spin-nonflip amplitude experience absorption corrections
- Absorption is evident in the SDMEs and the BSA
- π-exchange dominates small- t region; a_{2} exchange dominates the large- t region.
- A simplistic model that assumes Regge exchange and factorization
- Explains the general features the SDMEs of $\pi \Delta$ photoproduction; needs fine tuning to mathc the data.
- Diagonal elements of $\rho^{0,1}$ can be interpreted as sums of production probabilities
- Δ is produced dominantly in the helicity $\pm 1 / 2(\pm 3 / 2)$ configurration at small- t (large- t)
- Relative phases of helicity amplitudes can be fixed from SDMEs
- All amplitudes except the natural spin-nonflip amplitude experience absorption corrections
- Absorption is evident in the SDMEs and the BSA
- π-exchange dominates small- t region; a_{2} exchange dominates the large- t region.

Thank you!

K. Schilling, P. Seyboth, and Guenter E. Wolf.

On the Analysis of Vector Meson Production by Polarized Photons.
Nucl. Phys. B, 15:397-412, 1970.
[Erratum: Nucl.Phys.B 18, 332 (1970)].
A. Boyarski, Robert E. Diebold, Stanley D. Ecklund, G. E. Fischer, Y. Murata, Burton Richter, and W. S. C. Williams. PHOTOPRODUCTION OF pi- delta++ (1236) FROM HYDROGEN FROM $5-\mathrm{GeV}$ TO $16-\mathrm{GeV}$.
Phys. Rev. Lett., 22:148-151, 1969.
P. K. Williams.

Extrapolation model for pi pi scattering.
Phys. Rev. D, 1:1312-1318, 1970.
J. Nys, V. Mathieu, C. Fernández-Ramírez, A. Jackura, M. Mikhasenko, A. Pilloni, N. Sherrill, J. Ryckebusch, A. P. Szczepaniak, and G. Fox.
Features of $\pi \Delta$ Photoproduction at High Energies.
Phys. Lett. B, 779:77-81, 2018.
A. C. Irving and R. P. Worden.

Regge Phenomenology.
Phys. Rept., 34:117-231, 1977.
S. U. Chung and T. L. Trueman.

Positivity Conditions on the Spin Density Matrix: A Simple Parametrization.
Phys. Rev. D, 11:633, 1975.
V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, and A. P. Szczepaniak.

Moments of angular distribution and beam asymmetries in $\eta \pi^{0}$ photoproduction at GlueX.
Phys. Rev. D, 100(5):054017, 2019.

$\hat{\beta}_{\mu_{i} \mu_{f}}^{e, i f}$	Expression
$\hat{\beta}_{+1}^{\pi, \gamma \pi}(t)$	$\sqrt{2} e$
$\hat{\beta}_{+1}^{\rho, \gamma \pi}(t)$	$\frac{g_{\rho \pi \gamma}}{2 m_{\rho}}$
$\hat{\beta}_{+1}^{b_{1,} \gamma \pi}(t)$	$\frac{g_{b_{1} \pi \gamma}}{2 m_{b_{1}}}$
$\hat{\beta}_{+1}^{a_{2}, \gamma \pi}(t)$	$\frac{g_{a_{2} \pi \gamma}}{2 m_{a_{2}}^{2}}$
$\begin{equation*} \hat{\beta}_{+\frac{1}{2}+\frac{3}{2}}^{\pi \cdot N \Delta} \tag{t} \end{equation*}$	$\frac{\mathrm{g}_{\pi N \Delta}\left(m_{N}+m_{\Delta}\right)}{\sqrt{2} m_{\Delta}}$
$\begin{equation*} \hat{\beta}_{-\frac{1}{2}+\frac{1}{2}}^{\pi, N \Delta} \tag{t} \end{equation*}$	$\frac{g_{\pi N \Delta}\left(-m_{N}^{2}+m_{N} m_{\Delta}+2 m_{\Delta}^{2}+t\right)}{\sqrt{6} m_{\Delta}^{2}}$
$\hat{\beta}_{+\frac{1}{2}+\frac{1}{2}}^{\pi, N \Delta}(t)$	$\frac{-g_{\pi N \Delta}\left(-m_{N}^{3}-m_{N}^{2} m_{\Delta}+m_{\Delta}^{3}+2 m_{\Delta} t+m_{N}\left(m_{\Delta}^{2}+t\right)\right)}{\sqrt{6} m_{\Delta}^{2}}$
$\begin{equation*} \hat{\beta}_{-\frac{1}{2}+\frac{3}{2}}^{\pi, N \Delta} \tag{t} \end{equation*}$	$\frac{-g_{\pi N \Delta}}{\sqrt{2} m_{\Delta}}$
$\begin{equation*} \hat{\beta}_{+\frac{1}{2}+\frac{3}{2}}^{\rho, N \Delta} \tag{t} \end{equation*}$	$\frac{-\left(2 m_{\Delta} g_{\rho N \Delta}^{(1)}+g_{\rho N \Delta}^{(2)}\left(m_{N}-m_{\Delta}\right)\right)}{2 m_{\Delta}^{2}}$
$\begin{equation*} \hat{\beta}_{-\frac{1}{2}+\frac{1}{2}}^{\rho, N \Delta} \tag{t} \end{equation*}$	$\frac{-\left(2 m_{N} m_{\Delta} g_{\rho N \Delta}^{(1)}+g_{\rho N \Delta}^{(2)}\left(-m_{N} m_{\Delta}+m_{\Delta}^{2}+2 t\right)+2 t g_{\rho N \Delta}^{(3)}\right)}{2 \sqrt{3} m_{\Delta}^{3}}$
$\begin{equation*} \hat{\beta}_{+\frac{1}{2}+\frac{1}{2}}^{\rho, N \Delta} \tag{t} \end{equation*}$	$\frac{-\left(2 m_{\Delta} g_{\rho N \Delta}^{(1)}+g_{\rho N \Delta}^{(2)}\left(2 m_{N}-3 m_{\Delta}\right)+2 g_{\rho N \Delta}^{(3)}\left(m_{N}-m_{\Delta}\right)\right)}{2 \sqrt{3} m_{\Delta}^{3}}(-t)$
$\begin{equation*} \hat{\beta}_{-\frac{1}{2}+\frac{3}{2}}^{\rho, N \Delta} \tag{t} \end{equation*}$	$\frac{g_{\rho N \Delta}^{(2)}}{2 m_{\Delta}^{2}}$

Residues from the JPAC model.

BSA from the JPAC model compared to the GlueX data (F. Afzal (GlueX Collaboration), private communication. Publication in preparation).

Figure: Natural and Unnatural amplitudes from the JPAC model compared with IWM.

$$
\begin{align*}
& \rho_{\frac{1}{2} \frac{1}{2}}^{0}+\rho_{\frac{1}{2} \frac{1}{2}}^{1}=\frac{2}{N}\left(\left|N_{0}\right|^{2}+\left|N_{1}\right|^{2}\right) \operatorname{Re}\left(\rho_{\frac{3}{2} \frac{1}{2}}^{0}+\rho_{\frac{3}{2} \frac{1}{2}}^{1}\right)=\frac{2}{N} \operatorname{Re}\left(N_{-1} N_{0}^{*}-N_{1} N_{2}^{*}\right) \\
& \rho_{\frac{1}{2} \frac{1}{2}}^{0}-\rho_{\frac{1}{2} \frac{1}{2}}^{1}=\frac{2}{N}\left(\left|U_{0}\right|^{2}+\left|U_{1}\right|^{2}\right) \operatorname{Re}\left(\rho_{\frac{3}{2} \frac{1}{2}}^{0}-\rho_{\frac{3}{2} \frac{1}{2}}^{1}\right)=\frac{2}{N} \operatorname{Re}\left(U_{-1} U_{0}^{*}-U_{1} U_{2}^{*}\right) \tag{26}\\
& \rho_{\frac{3}{2} \frac{3}{2}}^{0}+\rho_{\frac{3}{2} \frac{3}{2}}^{1}=\frac{2}{N}\left(\left|N_{-1}\right|^{2}+\left|N_{2}\right|^{2}\right) \operatorname{Re}\left(\rho_{\frac{3}{2}-\frac{1}{2}}^{0}+\rho_{\frac{3}{2}-\frac{1}{2}}^{1}\right)=\frac{2}{N} \operatorname{Re}\left(N_{0} N_{2}^{*}+N_{1} N_{-1}^{*}\right) \tag{27}\\
& \rho_{\frac{3}{2} \frac{3}{2}}^{0}-\rho_{\frac{3}{2} \frac{3}{2}}^{1}=\frac{2}{N}\left(\left|U_{-1}\right|^{2}+\left|U_{2}\right|^{2}\right) \operatorname{Re}\left(\rho_{\frac{3}{2}-\frac{1}{2}}^{0}-\rho_{\frac{3}{2}-\frac{1}{2}}^{1}\right)=\frac{2}{N} \operatorname{Re}\left(U_{0} U_{2}^{*}+U_{1} U_{-1}^{*}\right) \tag{28}\\
& \operatorname{Im} \rho_{\frac{3}{2} \frac{1}{2}}^{2}=\frac{1}{N} \operatorname{Re}\left(N_{-1} U_{0}^{*}+N_{2} U_{1}^{*}-N_{1} U_{2}^{*}-N_{0} U_{-1}^{*}\right) \tag{29}\\
& \operatorname{Im} \rho_{\frac{3}{2}-\frac{1}{2}}^{2}=\frac{1}{N} \operatorname{Re}\left(N_{-1} U_{1}^{*}-N_{2} U_{0}^{*}-U_{-1} N_{1}^{*}+U_{2} N_{0}^{*}\right) \tag{30}\\
& N=2\left(\left|N_{-1}\right|^{2}+\left|N_{0}\right|^{2}+\left|N_{1}\right|^{2}+\left|N_{2}\right|^{2}+\left|U_{-1}\right|^{2}+\left|U_{0}\right|^{2}+\left|U_{1}\right|^{2}+\left|U_{2}\right|^{2}\right) \tag{31}\\
& \Sigma=2 \sum_{\sigma=-1,0,1,2}\left(\left|N_{\sigma}\right|^{2}-\left|U_{\sigma}\right|^{2}\right) \tag{32}
\end{align*}
$$

