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Outlook

• Motivation ➛ Explore new ways to learn the properties of the hadron spectrum 

• Standard lineshape analysis 

• Neural networks 

• Benchmark 

• Takeaways
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Standard lineshape analysis



Top-down approach
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PhD comics

Start from a model/theory

Compute amplitude

Compare to data (or  not)

Predictive power 😎 
Physics interpretation 😎 
  (within a model 😢) 
Biased by hypothesis 🤪❓



Bottom-up approach
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Extract physics

Set of generic amplitudes

Start from data
PhD comics

Less predictive 😔 
Some interpretation 😕 
Minimal bias 😎



Examples
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Rodas et al (JPAC) EPJC 82 (2022) 80

CFR et al (JPAC) PRL 123 (2019) 092001

Rodas et al (JPAC) PRL 122 (2019) 042002



Standard approach to resonant lineshape analysis

• Take an amplitude, it has parameters to be determined 
• Fit data using Maximum Likelihood or 𝛘2 
• Extract parameters, get pole positions and compute uncertainties 
• Assess the probability that those data were generated by your amplitude 
• If 𝛘2 is reasonable, one can claim that the physical interpretation of the data is 

possible 
• One can do this with different amplitudes that represent different underlying 

dynamics 
• Compare amplitudes? Compare dynamics?
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J/Psi projection data

• We focus on Sigma-D threshold


• Only one partial wave contributes to the 
signal


• The threshold is responsible for the 
dynamics


• Other singularities are irrelevant
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CFR et al (JPAC) PRL 123 (2019) 092001



Near-threshold model (two channels)
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Virtual and bound states
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Result
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Interpretation obtained:  
Virtual state on IV RS (v|4)

M = 4319.7 ± 1.6 MeV
Γ = − 0.8 ± 2.4 MeV



Neural networks



Holy Grail: AI as a tool for physics discovery

14



Neural networks as classifiers
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Training



Neural networks as classifiers

16

Training



Neural networks as classifiers
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Training



Neural networks as classifiers
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Training



Neural networks as classifiers
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Disclaimer: Made up percentages

New picture



Warning! Be aware of bias

• What you get depends completely on your training 

• If you train your network to identify {🐶,🐱,🐷,🐹} don't expect it to identify 🐼! 

• The neural network does no know what a 🐼 is
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Can machine learning help us?

• The question: 
• Can we train a neural network to analyze a lineshape and get as a result 

what is the probability of each possible characterization? 
• First explorations of neural networks as classifiers for hadron spectroscopy 

• Sombillo et al. PRD 102 (2020) 016024,104 (2021) 036001  
• If possible... 

• What other information can we gain by using machine learning techniques? 
• Benchmark case 

• The Pc(4312) lineshape: Ng et al (JPAC) PRD 105 (2022) L091501 
• Still far away from answering the question but we are advancing
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Building a benchmark



Building a benchmark

• We shoose a model that we fully uderstand to teach the NN about lineshapes 

• Simple enough to perfomr comparison between standard and NN approaches 

• We use the model on data that we know very well 

• Implement uncertainties in both the training and the data analysis
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Ng et al (JPAC) PRD 105 (2022) L091501



Model for the training set
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Dictionary
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Building the training set

• 105 training curves


• Generated by randomly setting parameter 
values in a wide range


• Curves are computed at the experimental 
energies


• The lineshapes are convoluted with the 
experimental resolution


• Gaussian noise included to mimic 
uncertainties


• Compare "blurry to blurry"
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Neural network architecture
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Optimizing (training) the neural network: fitting weights
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Training
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Experimental uncertainties

• Associate a distribution to each 
experimental datapoint: typically a 
Gaussian with mean and sigma from 
experiment


• Monte Carlo. Generate pseudodata 
according to the chose distribution


• Run statistics on the pseudodatasets. 
Compute distributions, mean, standard 
deviation, quantiles...
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Applying NN to data

• We pass the three dataset through the NN


• Uncertainties using bootstrap


• Obtain probability distributions


• We unsurprisingly recover the same result 
as the standard approach
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Three datasets analyzed with the same network
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Explainability

• SHAP values


• Allows to determine how a given feature in 
the input layer (in our case an experimental 
datapoint) impacts the decision made by 
the network in the output layer (the classes)
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Takeaways

• We tested a relatively simple, ML based application 

• Neural networks are not a substitution of the canonical approach to analyzing 
data 

• Neural networks provide a way to truly compare interpretations and gain 
physics insight 

• We are (hopefully) in the begining
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Always remember
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