From pole parameters to line shapes and branching ratios

L. A. Heuser, G. Chanturia, F-K. Guo,
C. Hanhart, M. Hoferichter,B. Kubis

PWA13/ATHOS8

What is the plan?

What is the usual procedure?
\rightarrow Analysis of data to determine resonance parameters

What do we want to do?
\rightarrow Change the direction: Recreate from resonance parameters

- Partial wave amplitude t_{ℓ}
- Form factors F_{ℓ}
- Branching ratios

One full channel $(\pi \pi)$ one resonance $\left(f_{0}(500) / \rho(770)\right)$

Naive approach: one-channel resonance exchange

Naive model: Resonance exchange (on the $(+/-)$ sheet)

$$
\mathrm{i} T^{(+/-)}=\underbrace{\mathrm{i} g}_{\text {coupling }} \cdot \underbrace{\frac{\mathrm{i}}{s-m^{2}+g^{2} \Pi(s)^{(+/-)}}}_{\text {propagator }} \cdot \underbrace{\mathrm{i} g}_{\text {coupling }}
$$

$\rightarrow g, m$ needed to fix pole (2 real parameters)
\rightarrow residue then automatically determined by pole postion and Π
$\rightarrow \Pi$ is scalar 2-particle loop: self-energy contribution
\rightarrow We found: need to decouple pole and residue

\Rightarrow Background interaction needed

Two-potential-formalism

- Conceived to solve nucleon scattering (Nakano et al. 1982, PRC 26)
- Divides interaction potential into two distinct parts: $V_{1}+V_{2}$
- Was used before to describe meson interaction (Hanhart 2012, PLB 715)
- Divide resonance and background physics:

Two-potential-formalism

- Conceived to solve nucleon scattering (Nakano et al. 1982, PRC 26)
- Divides interaction potential into two distinct parts: $V_{1}+V_{2}$
- Was used before to describe meson interaction (Hanhart 2012, PLB 715)
- Divide resonance and background physics:

$$
\Rightarrow T=T_{b}+T_{R}
$$

Two-potential-formalism

- Conceived to solve nucleon scattering (Nakano et al. 1982, PRC 26)
- Divides interaction potential into two distinct parts: $V_{1}+V_{2}$
- Was used before to describe meson interaction (Hanhart 2012, PLB 715)
- Divide resonance and background physics:

$$
\Rightarrow T=T_{b}+T_{R}
$$

Two-potential-formalism

- Conceived to solve nucleon scattering (Nakano et al. 1982, PRC 26)
- Divides interaction potential into two distinct parts: $V_{1}+V_{2}$
- Was used before to describe meson interaction (Hanhart 2012, PLB 715)
- Divide resonance and background physics:

$$
\Rightarrow T=T_{b}+T_{R}
$$

Two-potential formalism

$$
\overbrace{}^{\prime}=\bullet^{\prime},+\bullet^{\prime} T_{T_{b}}^{\prime} \Leftrightarrow \gamma=1+G T_{b}
$$

$\operatorname{Disc}(\gamma)=2 i \gamma^{\prime}(s) T_{b}^{\prime \prime}(s)$
$\operatorname{Disc}(\Sigma)=2 i \rho \gamma^{\prime} \gamma^{\prime \prime}(s)$

Background model

$$
T_{b}=\frac{f_{0}}{f(s)-f_{0} \Pi(s)}=\frac{1}{\rho(s) \cot \left(\delta_{b}\right)-i \rho(s)}
$$

Background model

$$
T_{b}=\frac{f_{0}}{f(s)-f_{0} \Pi(s)}=\frac{1}{\rho(s) \cot \left(\delta_{b}\right)-i \rho(s)}
$$

Possible energy dependencies:

- Polynomials (resonances)
- Left-hand cuts (Danikin et al. 2023, PRD 107)

$$
\omega(s)=\frac{\sqrt{s-s_{L}}-\sqrt{s_{E}-s_{L}}}{\sqrt{s-s_{L}}+\sqrt{s_{E}-s_{L}}}
$$

physical region $\overline{s_{t h r} S_{E}}$

T-matrix construction

$$
f(s)=1+\sum_{k=1} f_{k} \omega(s)^{k}+\sum_{n=1} g_{n} s^{n}
$$

T-matrix construction

T-matrix construction

$$
f(s)=1+f_{1}\left(\omega(s)+2 \omega(s)^{2}\right)+f_{\mathrm{R}} s \quad f_{\mathrm{R}}=\frac{1}{(2 \mathrm{GeV})^{2}}
$$

Function
Formula
Vertex function $\gamma(s) \quad \exp \left\{\frac{s}{\pi} \int_{s_{t h r}}^{\infty} \frac{\delta_{b}\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right) s^{\prime}}\right\}$
Self-energy $\Sigma(s) \quad \frac{s}{\pi} \int_{s_{t h r}}^{\infty} \frac{\rho\left(s^{\prime}\right)\left|\gamma\left(s^{\prime 2}\right)\right| d s^{\prime}}{\left(s^{\prime}-s\right) s^{\prime}}$

$$
T=\frac{f_{0}}{f(s)-f_{0} \Pi(s)}-\frac{g^{2} \gamma(s)^{2}}{s-m^{2}+g^{2} \Sigma(s)}
$$

T-matrix construction $\ell \neq 0$

$$
f(s)=1+f_{1}\left(\omega(s)+2 \omega(s)^{2}\right)+f_{\mathrm{R}} s \quad f_{\mathrm{R}}=\frac{1}{(2 \mathrm{GeV})^{2}}
$$

$$
\begin{array}{c|c}
\text { Function } & \text { Formula } \\
\hline \hline \gamma_{\ell}(s)=\xi^{2 \ell} \hat{\gamma}_{\ell} & \xi^{2 \ell} \exp \left\{\frac{s}{\pi} \int_{s_{t h r}}^{\infty} \frac{\delta_{b}^{\ell}\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right) s^{\prime}}\right\} \\
\hline \Sigma_{\ell}(s) & \frac{s}{\pi} \int_{s_{t h r}}^{\infty} \frac{\rho\left(s^{\prime}\right) \xi^{2 \ell}\left|\hat{\gamma}_{\ell}\left(s^{\prime}\right)\right|^{2} d s^{\prime}}{\left(s^{\prime}-s\right) s^{\prime}} \\
\xi^{2 \ell}=\frac{p^{2 \ell}}{2 \ell+1} B_{\ell}^{2}\left(\frac{s-s_{t h r}}{s_{0}-s_{t h r}}\right)
\end{array}
$$

Parameter determination

Pole adjustment

$s_{p}-m^{2}+g^{2} \Sigma^{\prime \prime}\left(s_{p}\right) \stackrel{!}{=} 0$
$\rightarrow m$ and g fixed by pole position

Parameter determination

Pole adjustment

$s_{p}-m^{2}+g^{2} \Sigma^{\prime \prime}\left(s_{p}\right) \stackrel{!}{=} 0$
$\rightarrow m$ and g fixed by pole position

Residue adjustment

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{C} T^{\prime \prime}\left(s^{\prime}, f_{0}, \ldots, f_{i}\right) d s^{\prime}=\frac{1}{2 \pi \mathrm{i}} \oint_{C} \frac{-Z g^{2} \gamma^{\prime \prime 2}}{s-s_{p}} d s^{\prime}=-\tilde{g}^{2}\left(f_{0}, \ldots, f_{i}\right)
$$

- Determine background parameters $\left(f_{0}, \ldots, f_{i}\right)$ from residue numerically

Parameter determination

Pole adjustment
$s_{p}-m^{2}+g^{2} \Sigma^{\prime \prime}\left(s_{p}\right) \stackrel{!}{=} 0$
$\rightarrow m$ and g fixed by pole position

Residue adjustment

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{C} T^{\prime \prime}\left(s^{\prime}, f_{0}, \ldots, f_{i}\right) d s^{\prime}=\frac{1}{2 \pi \mathrm{i}} \oint_{C} \frac{-Z g^{2} \gamma^{\prime \prime 2}}{s-s_{p}} d s^{\prime}=-\tilde{g}^{2}\left(f_{0}, \ldots, f_{i}\right)
$$

- Determine background parameters $\left(f_{0}, \ldots, f_{i}\right)$ from residue numerically
\Rightarrow one pole and one residue ($=4$ inputs) $\rightarrow m, g, f_{0}, f_{1}$

Different versions of the model

(i) $f_{0}=f_{1}=0 \quad \Rightarrow$ no background at all
(ii) $f_{0} \neq 0, \quad f_{1}=0 \Rightarrow$ only an additional constant
(iii) $f_{0}, f_{1} \neq 0 \quad \Rightarrow$ constant and Ihc
(iv) $f_{0}, f_{1} \neq 0$ and $K \bar{K}$ included fully coupling to resonance

Results: the $\rho(770)$

(i) Already residue within 2%
(ii) Residue within 1%
(iii) Exact residue additional resonance structure in vicinity of ρ^{\prime}

Results: The $f_{0}(500)$

(i) Phase of residue off by 100%
(ii) Residue within 10%
\rightarrow zero below threshold
(iii) Perfect residue
\rightarrow zero below threshold

How to include more channels

For the $\boldsymbol{\rho}(\mathbf{7 7 0})$:
(1) $\bar{K} K$ included fully via VMD approximation $g_{\bar{K} K}^{2}=\frac{g_{\pi \pi}^{2}}{2}$
(2) $\pi \gamma$ defined absolute value of coupling $\left|\tilde{g}_{\pi \gamma}\right|^{2}=\left|Z g_{\pi \gamma}^{2}\right|$ contribution in propagtor neglected
For the $\boldsymbol{f}_{\mathbf{0}} \mathbf{(5 0 0)}$:
(1) $\bar{K} K$ included fully via third fitting parameter
(2) $\gamma \gamma$ defined absolute value of coupling $\left|\tilde{g}_{\gamma \gamma}\right|^{2}=\left|Z g_{\gamma \gamma}^{2}\right|$ contribution in propagtor neglected

$$
Z=\frac{\tilde{g}_{i}^{2}}{g_{i}^{2} \gamma_{i}^{\prime \prime}\left(s_{p}\right)^{2}}
$$

Branching ratios

Narrow-width formula connects pole $\sqrt{s_{p}}=\left(M_{R}-\mathrm{i} \Gamma_{R} / 2\right)$, residue \tilde{g}_{i} and branching ratios:

$$
\Gamma_{i}=\frac{\left|\tilde{g}_{i}\right|^{2}}{M_{R}} \rho_{i}\left(M_{R}^{2}\right)
$$

Branching ratios can be calculated

$$
\mathrm{BR}(R \rightarrow i)=\frac{\Gamma_{i}}{\Gamma_{R}}
$$

- Why is there an absolute?
- What happens with closed channels?
- How well does this work for non-trivial lineshapes?

Narrow-width limit in our formalism

$$
D^{(n)}\left(s_{p}\right)^{-1}=s_{p}-m^{2}+\sum_{i} g_{i}^{2} \Sigma_{i}^{(n)}\left(s_{p}\right)=0
$$

$$
\begin{aligned}
\Gamma_{R} & =\frac{1}{M_{R}} \operatorname{lm}\left(\sum_{i} g_{i}^{2} \Sigma_{i}^{(n)}\left(s_{p}\right)\right)=\sum_{i} \underbrace{(-1)^{(n)} \frac{g_{i}^{2}}{M_{R}}\left|\operatorname{lm}\left(\Sigma_{i}^{(n)}\left(s_{p}\right)\right)\right|}_{=\Gamma_{i}^{(p)} \Rightarrow \Gamma_{i}^{(p, m)}=\left|\Gamma_{i}^{(p)}\right| / \sum_{i}\left|\Gamma_{i}^{(p)}\right|} \\
& \approx \sum_{k} \underbrace{\frac{g_{k}^{2}}{M_{R}} \rho_{i}\left(M_{R}^{2}\right)}_{\approx \Gamma_{i}^{(n \mathrm{n})}} \quad \text { Can be negative! }
\end{aligned}
$$

Limit of non-interacting mesons ($\Sigma \approx \Pi$), narrow resonances $\left(s_{p} \approx M_{R}^{2}\right)$ and all channels open $\left((-1)^{(n)}=1\right)$

A better way to determine branching ratios

\rightarrow Count events

$$
\begin{gathered}
r_{i}=\int_{s_{s t r}(\mathrm{cr}}^{\infty} d s|D(s)|^{2} g_{i}^{2} \gamma_{i}^{2} \rho_{i}(s) \\
\mathrm{BR}^{(c r)}(R \rightarrow i)=\frac{r_{i}}{\sum_{j} r_{j}}
\end{gathered}
$$

$\sum_{j} r_{j}=\pi$, Källén-Lehmann representation

$$
\sum_{j} r_{j}=\int_{0}^{\infty} \frac{\sum_{j} g_{j}^{2} \rho_{j}\left|\gamma_{j}\right|^{2} \Theta\left(s-s_{t h r, j}\right)}{\left|s-m^{2}+\sum_{k} g_{k}^{2} \Sigma_{k}(s)\right|^{2}} d s=-\int_{0}^{\infty} \operatorname{Im}(D(s)) d s
$$

Branching ratio results

		narrow width	pole location		this work
resonance	channel (a)	$\mathrm{Br}_{a}^{(\mathrm{nw})}$	$\mathrm{Br}_{\mathrm{a}}^{(\mathrm{p})}$	$\mathrm{Br}_{\mathrm{a}}^{(\mathrm{p}, \mathrm{m})}$	$\mathrm{Br}_{a}^{(\mathrm{cr})}$
$\mathrm{f}_{0}(500)$	$\pi \pi$	$0.8(1)$	$1.03(1)(0)$	$0.97(0)(0)$	$0.970(5)(12)$
	$\gamma \gamma \times 10^{6}$	$3.0(7)$	$5.0(1.6)(0.3)$	$4.8(1.5)(0.3)$	$1.4(4)(3)$
	$\bar{K} K$	0	$-0.03(1)(0)$	$0.03(1)(0)$	$0.030(5)(12)$
	sum	0.8	1.0	1.0	1.0
$\rho(770)$	$\pi \pi$	$1.007(14)$	$1.04(1)(4)$	$0.96(1)(3)$	$0.95(4)(3)$
	$\pi \gamma 10^{4}$	$5.1(1.1)$	$3(1)(6)$	$3(1)(3)$	$12(1)(4)$
	$\bar{K} K$	0	$-0.05(1)(3)$	$0.04(1)(3)$	$0.05(4)(3)$
	sum	1.0	1	1	1

Conclusion and outlook

- Flexible parametrization for resonances
- Adjusted parameters to recreate residue and pole
- Used lineshapes to determine branching ratio unambiguously
- Improve: more fully implemented channels, more resonances
- Outlook: model used in project for analysis of $\pi \pi$ and $\pi \omega$ data

Thank you!

Numerics - challenges that we overcame (mostly)

\Rightarrow Stacked integrals en masse

- $\Pi(s)$ needs dispersion integral
- $\Omega(s)$ depends on $\Pi(s)$ and needs dispersion integral
- $\Sigma(s)$ depends on $\Omega(s)$ and needs dispersion integral
- \tilde{g} depends on all of them and needs circular integral

Pythons vectorization and precalculated Π s to ran code reasonably fast
Calculation on a lattice of parameter pairs $\left(f_{0}, f_{1}\right)$

The barrier discussion -positivity what?

$$
\begin{gathered}
\text { Positivity } \\
\Rightarrow \int_{0}^{\infty} \mathrm{d} \mu^{2} \rho\left(\mu^{2}\right) \stackrel{!}{=} 1 \Rightarrow \rho\left(\mu^{2}\right) \propto\left(\frac{1}{\mu^{2}}\right)^{1+\frac{n}{2}} \quad n \stackrel{!}{>} 0
\end{gathered}
$$

The barrier discussion -positivity what?

$$
\begin{gathered}
\text { Positivity } \\
\Rightarrow \int_{0}^{\infty} \mathrm{d} \mu^{2} \rho\left(\mu^{2}\right) \stackrel{!}{=} 1 \Rightarrow \rho\left(\mu^{2}\right) \propto\left(\frac{1}{\mu^{2}}\right)^{1+\frac{n}{2}} \quad n \stackrel{!}{>} 0
\end{gathered}
$$

Propagator can be expressed as $\Delta^{\prime}\left(p^{2}\right)=\int_{0}^{\infty} \mathrm{d} \mu^{2} \frac{\rho\left(\mu^{2}\right)}{\mu^{2}+p^{2}-i \epsilon}$

The barrier discussion -positivity what?

$$
\begin{gathered}
\text { Positivity } \\
\Rightarrow \int_{0}^{\infty} \mathrm{d} \mu^{2} \rho\left(\mu^{2}\right) \stackrel{!}{=} 1 \Rightarrow \rho\left(\mu^{2}\right) \propto\left(\frac{1}{\mu^{2}}\right)^{1+\frac{n}{2}} \quad n \stackrel{!}{>} 0
\end{gathered}
$$

Propagator can be expressed as $\Delta^{\prime}\left(p^{2}\right)=\int_{0}^{\infty} \mathrm{d} \mu^{2} \frac{\rho\left(\mu^{2}\right)}{\mu^{2}+p^{2}-i \epsilon}$
$\forall n>0 \Rightarrow \lim _{p^{2} \rightarrow \infty} \Delta^{\prime}\left(p^{2}\right) \propto \frac{1}{p^{2}}$
If propagator falls faster, spectral density $\rho=-\frac{1}{\pi} \operatorname{lm}(D)$ not normalized

Some πK results

Adler zeros

Chiral symmetry causes zero in scalar QCD amplitudes Dependent on reaction and isospin configuration Chiral limit $s_{A}=0$
Non-zero quark masses $\rightarrow s_{A}$ gets corrections (with every O in chiral expansion)

$$
s_{A}^{(2)}=\frac{M_{\pi}^{2}}{2}, \quad \frac{s_{A}^{(4)}}{s_{A}^{(2)}}=-0.12(3), \quad \frac{s_{A}^{(6)}}{s_{A}^{(2)}}=-0.03(1)
$$

