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2Two-photon exchange

TPE has become field or research in its own right

e

X NN
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Elastic  cross section: TPE as radiative correction, involves Re(TPE) and Im(TPE) 
Much theoretical work, situation still inconclusive

ep

Direct measurements:  charge asymmetry,  target normal spin asymmetriese±N eN( ↑ )

Target normal single-spin asymmetry

Zero at , pure  effectO(α2) O(α3)

Interference on one- and two-photon exchange
Also contribution from Bethe-Heitler - Virtual Compton interference

Inclusive or elastic scattering

Involves only Im(TPE): Finite integral, on-shell amps

Can be measured in wide kinematic range: 
Low-energy — resonance region— DIS

eN → e′￼X
eN → e′￼N

inclusive

elastic

AN =
σ↑ − σ↓
σ↑ + σ↓



3Normal spin asymmetry in inclusive eN scattering

Theoretical calculations
DIS region: QCD mechanism based on vacuum structure. Afanasev, Strikman, Weiss 2008

HERMES 2014: p target, 2 GeV, W > AN ∼ 10−2

Various pQCD-based mechanisms. Metz, Schlegel, Goeke 2006; Metz et al. 2012; Schlegel 2013
Large variations AN ∼ 10−4 − 10−2

 because anomalous magnetic moment of quark  nucleonAN(DIS) ≪ AN(low-energy elastic) ≪

Experiments

JLab Hall A Katich et al. 2014: 3He target, 1.7-2.9 GeV, W = AN ∼ 10−2

Proposal JLab Hall A Grauvogel, Kutz, Schmidt 2021: p target,  = 2.2, 4.4, 6.6 GeVEe

Resonance region
 + nonresonant  as final states and intermediate states in TPEN, Δ, N* πN

Need to combine contributions of channels at amplitude level — cancellations?

Need transition currents ,  etc.⟨Δ |J |N⟩ ⟨Δ |J |Δ⟩

Develop systematic approach based on 1/Nc expansion!

How does transition from low-energy to DIS regime happen? Need to explore resonance region!



41/Nc expansion: Basics

Semiclassical limit of QCD 

= I = 1/2, 3/2S

Large-  limit of QCDNc

Hadron masses, couplings, matrix elements scale in  
“Organization” of non-perturbative dynamics

Nc

Emerging dynamical spin-flavor symmetry  
Baryons in multiplets with masses , splittings 

SU(2Nf )
O(Nc) O(1/Nc)

 and  transitions related by symmetry: N → N N → Δ
⟨Δ |𝒪 |N⟩ = [symmetry factor] × ⟨N |𝒪 |N⟩

 expansion of hadronic matrix elements1/Nc

Parametric expansion: Systematic, predictive, controlled accuracy

Applied to current matrix elements, hadronic amplitudes

baryon mass

(Nc)

O (1/ )cN

O (1/ )cN

N, ∆

N *

O

‘tHooft 1974, Witten 1979

Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993

Vector and axial currents: Fernando, Goity 2020



51/Nc expansion: Currents

Generators of spin-flavor group algebra:  ̂Si, ̂Ia, Ĝia

Matrix elements between ground-state baryons from symmetry: 

⟨B(S′￼, S′￼3, I′￼3) | . . . |B(S, S3, I3)⟩ = fun(Nc) × Clebsches S, S′￼= 1/2, 3/2 B = N, Δ

EM current operator expressed through generators:

4

the baryons have momenta O(N0
c ), their velocities are

O(N�1
c ), because the masses areO(Nc), and their motion

is e↵ectively nonrelativistic. Transition matrix elements
between baryon states in frames where the momenta are
O(N0

c ) can therefore be computed in a non-relativistic ex-
pansion, where they are expressed in terms of the SU(4)
generators and the initial/final baryon momenta.

The ground-state baryons belong to the totally sym-
metric SU(4) multiplet. It consists of states with
isospin/spin I = S and S = 1

2 , · · · ,
Nc
2 , which includes

the N and � states with I = S = 1
2 and 3

2 . States in
the multiple are characterized by S and the projections
S3 and I3 and denoted by |SS3I3i. The mass splitting
between the states is O(N�1

c ). In this multiplet the gen-
erators Ĝ

ia have matrix elements O(Nc) between states
with S = O(N0

c ), while the generators Î
a and Ŝ

i obvi-
ously have matrix elements O(N0

c ).
This work requires the matrix elements of the EM

current operators between baryon states in the ground
state multiplet. The assignment of electric charges to
the quarks at arbitrary Nc [34] can be made in such a
way that the Standard Model gauge and gravitational
anomalies vanish as required for consistency, and such
that the charges of the baryons are simply given by the
usual relation Q = 1/2 + Î

3, independent of Nc. The
quark charges are then given by Qq = 3

2Nc
+ I3. In

the following the current is considered for transitions be-
tween baryon states with 3-momenta p,p0 = O(N0

c ), and
generally di↵erent spins S

0
6= S, and therefore di↵erent

masses; the 4-momentum transfer is q ⌘ p
0
� p, and its

components are q = O(N0
c ) and q

0 = O(N�1
c ). Including

leading and subleading terms in the 1/Nc expansion, the
isoscalar (S) and isovector (V ) components of the EM
current are given by [34]1

J
µ
S (q) = G

S
E(q

2)
1
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g
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� i
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0µij
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i
Ŝ
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V
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2)Îagµ0 � i
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i
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ja
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J
µ
EM(q) = J

µ
S (q) + J

µ3
V (q), (11)

where G
S
E,M and G

V
E,M are the form factors of the elec-

tric and magnetic components.2 The currents are ex-
pressed in terms of the SU(4) spin-flavor generators

1 Terms in the currents with higher powers of momenta have been
neglected, such as the isovector contribution to the time compo-
nent, which stems from a relativistic correction and is propor-
tional to 1

mN⇤ ✏0ijkqipjĜka. Such terms are suppressed except

at the upper end of the energy domain considered here and are
subleading in 1/Nc. The electric quadrupole component of the
current, which mediates N � � transitions, is suppressed by a
factor 1/N2

c with respect to the leading term [35] and thus irrel-
evant to the present calculation.

2 For the sake of convenience in the calculations and without sig-
nificant di↵erence the GE form factor is taken to be equal to the
corresponding F1 rather than the Sachs form factor.

and understood to be evaluated between multiplet states
hS

0
S
0
3I

0
3|...|SS3I3i. The magnetic terms are written with

a generic mass scale ⇤ = O(N0
c ), whose value is identified

with the physical nucleon mass (exempt from Nc scal-
ing); this formulation is natural for the 1/Nc expansion
and avoids the appearance of spurious powers of Nc that
would come from using the scaling mN in the denomi-
nator. The form factors in Eqs. (9) and (10) are defined
such that they coincide with the physical nucleon form
factors for ⇤ = mN (physical) and Nc = 3. In particular,
the factor 6/5 in the magnetic term of the isovector cur-
rent was introduced such that, for Nc = 3, GV

M coincides
with the physical nucleon isovector magnetic form factor.

The currents given by Eqs. (9) and (10) satisfy cur-
rent conservation to the necessary accuracy in 1/Nc. For
the magnetic terms (spatial components), this follows
from the vector product structure of the vertices; for the
electric terms (time components), it is realized because
q
0 = O(N�1

c ).

The order in 1/Nc of the components of the currents
in Eqs. (9) and (10) is as follows. The isovector magnetic
current is O(Nc), being represented by the spin-flavor
operator Ĝ

ia that has matrix elements O(Nc). This re-
flects the fact that the nucleon anomalous magnetic mo-
ment is O(Nc). (In the quark picture of baryons, this
happens because the magnetic moments of the quarks
add up coherently to form the total magnetic moment
of the baryon, see for instance Ref. [36].) The remain-
ing terms in the current are O(N0

c ), being proportional
to the operators 1̂, Ŝi, and I

a that have matrix ele-
ments O(N0

c ). At leading order in the 1/Nc expan-
sion, the dominant current component is therefore the
isovector magnetic current proportional to the operator
Ĝ

ia. Clear evidence of this dominance is the ratio of the
isovector and isoscalar magnetic moments of the nucleon,
G

V
M (0)/GS

M (0) = O(Nc) = 5.34. The dominant isovector
magnetic current also induces theM1 transitionsN ! �;
the other current components only have matrix elements
between states with same spin/isospin.

Equations (9) and (10) capture the 1/Nc expansion of
the EM currents to the accuracy needed in the present
calculation. Higher-order corrections beyond that accu-
racy arise from the nonrelativistic expansion of the mo-
tion of the baryons. For momenta O(N0

c ), both the spa-
tial components of the convection current and the time
component of the magnetic currents are O(N�1

c ). Fur-
ther higher-order corrections arise from the contribution

of subleading spin-flavor operators, namely Ŝ
i ~̂S2 for the

isoscalar magnetic current, and {Ĝ
i3
, Ŝ

2
} and Ŝ

i
Î
3 for

the isovector one. These higher-body spin-flavor opera-
tors are accompanied by factors 1/Nn�1

c , where n is the
number of spin-flavor generator factors in the composite
operator [31, 37]. The corrections to the magnetic cur-
rents are therefore suppressed by O(N�2

c ) relative to the
dominant isovector magnetic current. To the accuracy of
the present calculation, these higher order terms in the
currents are therefore irrelevant.

Expresses parametric expansion in 1/Nc

Charges/form factors fixed from  matrix elementsN → N

Predicts  and  matrix elementsN → Δ Δ → Δ

  form factorsGV,S
E,M(q2)

 
momentum transfer
q0 = 𝒪(N−1

c ), qi = 𝒪(N0
c )



61/Nc expansion: Kinematic regimes

Kinematic variables in inclusive electron scattering

e(k) + N(p) → e(k′￼) + X(p′￼)
s = (k + p)2 CM energy

q2 = (k − k′￼)2 momentum transfer

M2
X = p′￼

2 = (p + q)2 final-state mass

Kinematic regimes in 1/Nc expansion 5

Energy regime 1/Nc expansion regime Channels open Final states possible

I mN <
p
s < m�

p
s�mN ⇠ N�1

c , k ⇠ N�1
c N elastic

II m� <
p
s ⌧ mN⇤

p
s�mN ⇠ N�1

c , k ⇠ N�1
c N,� elastic or inelastic

III m� <
p
s . mN⇤

p
s�mN ⇠ N0

c , k ⇠ N0
c N,�, N⇤(suppr) elastic or inelastic

TABLE I. Kinematic regimes in application of the 1/Nc expansion to low-energy electron scattering.

The momentum dependence of the form factors plays
an essential role in the present calculation. The scale
governing the momentum dependence of the form factors
— the baryon “size” in the large-Nc limit — is O(N0

c ),
and the momentum transfer is t = O(N0

c ), so that the
functions are evaluated in a region where they di↵er sig-
nificantly from their varlues at zero momentum transfer.
The form factors in Eqs. (9) and (10) can be determined
by matching the expressions for Nc = 3 with the empiri-
cal proton and neutron form factors, which gives

G
S,V
E (t) = G

p
E(t)±G

n
E(t),

G
S,V
M (t) = G

p
M (t)±G

n
M (t). (12)

In the subsequent calculations, the small contribution of
the neutron’e electric form factor is neglected for sim-
plicity, G

n
E ⌘ 0, such that G

S
E = G

V
E = G

p
E . Fur-

thermore, it is assumed that the t-dependence of all the
form factors is of dipole form with a common mass scale
⇤2
EM = 0.71GeV2.
The construction of the currents Eqs. (9) and (10)

demonstrates the predictive power of the 1/Nc expansion.
The structure is dictated by the spin-flavor symmetry in
the large-Nc limit. The coe�cients are fixed by observ-
ables measured in N ! N transitions. Together, this
then predicts the matrix elements of the same operator
for N ! � and � ! � transitions.

III. CALCULATION

A. Kinematic regimes for the 1/Nc expansion

In this work the 1/Nc expansion is used to study the
spin dependence of inclusive eN scattering Eq. (1). When
applying the 1/Nc expansion to the scattering process, it
is necessary to specify the parametric order in 1/Nc of
the kinematic variables – the scattering energy, momen-
tum transfer, and final-state mass, Eq. (3). The physical
scales for the scattering energy and final-state mass are
set by the excitation energy of the � and N

⇤ baryon
resonances, which are of the parametric order

m� �mN = O(N�1
c ), (13)

mN⇤ �mN = O(N0
c ). (14)

Another physical scale arises from the excitation energy
of non-resonant ⇡N states, namely m⇡N �mN ; this scale
permits various choices for the assignment of its 1/Nc

scaling (see below). How the scattering energy is chosen
relative to the scales Eq. (14) determines what channels
are open in the process, and how the 1/Nc expansion is
to be applied to the transition currents. Di↵erent choices
are possible, leading to di↵erent versions of the 1/Nc ex-
pansion.

The present study considers three kinematic regimes
(see Table I for a summary):

I) Low-energy elastic regime: This is the regime of scat-
tering energies below the physical � threshold, mN <
p
s < m�. The 1/Nc scaling of the scattering energy and

CM momentum in this regime are
p
s �mN = O(N�1

c )
and k = O(N�1

c ). This regime therefore has vanishing
extent O(N�1

c ) in the large-Nc limit. In this regime the
only open channel in the intermediate and final states
is the nucleon. Both in this regime (and the following
inelastic regime II) the electric term in the current and
the isovector magnetic one become of the same order.
As seen later, in those regimes, the e↵ect of terms in
the asymmetry involving the electric charge become very
important for the proton.
II) Low-energy inelastic regime: This is the regime of

scattering energies above the physical � threshold but
significantly below the N

⇤ threshold, m� <
p
s ⌧ mN⇤.

The 1/Nc scaling of the scattering energy and CM mo-
mentum in this regime are

p
s � mN = O(N�1

c ) and
k = O(N�1

c ) (same as I), but the � channel is now open.
This regime can be treated within the low-energy ex-
pansion, in which the momenta are counted as O(N�1

c )
[34, 38]. Because the momentum transfer at the vertices
is parametrically small, t = O(N�1

c ), the t-dependence of
the form factors is formally suppressed. In reality one ob-
serves significant numerical e↵ects from the momentum
dependence of the form factors already in this regime (see
Sec. IV)
III) Intermediate-energy inelastic regime: This is the

regime where the scattering energy is above the� thresh-
old and can reach values up to and including the first
resonance region, m� <

p
s . mN⇤. The 1/Nc scal-

ing of the scattering energy and CM momentum are now
p
s�mN = O(N0

c ) and k = O(N0
c ), parametrically larger

than in I and II. Both � and N
⇤ states are now acces-

sible as intermediate states (the amplitude for N ! N
⇤

transitions are suppressed compared to N ! N,� tran-

sitions by N
�1/2
c [39, 40]). This regime corresponds to

the conventional 1/Nc expansion of baryon form factors
at momentum transfers t = O(N0

c ) and was considered
in Ref. [41]. The t-dependence of the baryon form factors
plays an essential role in this regime.

Expansion can be applied in different kinematic regimes: Different “focus”, reach, accuracy

Systematic calculation, defined accuracy, could be improved by higher-order corrections

Non-resonant  states suppressed in  relative to πN 1/Nc Δ

   CM momentumk = (s − m2)/2 s

“intermediate 
energies”

“low 
energies”



71/Nc expansion: Calculation

Calculate  amplitudes for  with -expanded currentseB → e′￼B′￼ B, B′￼= N, Δ 1/Nc

(a)

N, ∆

N, ∆

N, ∆N, ∆

N, ∆

N

n

N(c)

(b)

e e

N

N

N

e

e

e

i f

f ifi

f i

e e e

e e e e

γ

γ

∆

N

NN

f
k

p

e, θ

z

y

S

i

x

iN, p
fX, 

ke, 

Integrate over phase space of intermediate state in TPE

Sum over intermediate and final states

Project out normal-spin dependent part of cross section 



8Results:  at intermediate energiesAN

 at intermediate energies (regime III)AN

1.23 GeV  1.5 GeV< s ≲

0.3 GeV  0.6 GeV,< k ≲

Valid for

or

  “large angle”θ ∼ π/2and

LO 1/Nc expansion result: All transition currents magnetic isovector , simple structure. 
Electric currents come in at higher orders

Gia

 predicted in intermediate-energy regimeAN ∼ 10−2

Large contribution of  final states at angles , could be tested experimentally!Δ θ ∼ π/2

 is overall isovector: (proton) = (neutron)AN AN −AN

LO 1/Nc expansion result
Denominator always N + Δ
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FIG. 4. AN vs k (top row) and AN vs ✓ (bottom row) with inclusion of form factors and � width. Proton target (left column)
and neutron target (right column). Elastic (dashed lines) and inclusive (solid lines).

FIG. 5. Inclusive AN for proton target. Left panel: Comparison of results without form factors (dashed lines) and with form
factors (solid lines). Right panel: Comparison of results without � width (dashed) and with � width (solid); both are with
form factors.

corrections in regions I and II, k = O(N�1
c ), which is also

covered by the present expressions.

Figure 7 shows the comparison of the LO and NLO
results. Here the correct phase space, with the finite
N–� mass splitting, is used for the LO result. For the
neutron one sees that the LO result is close to the NLO
one, which is easy to understand as the contributions are

purely magnetic, and the only di↵erence is the disregard
of the isoscalar magnetic term at LO. On the other hand,
for the proton the e↵ect of the electric term in the cur-
rent, which is not present at LO, leads to a big di↵erence
at NLO. As mentioned earlier, the modified power count-
ing implied in the kinematic regions I and II shows the
relevance of the electric contributions, especially at the

 at low energies  
(regimes I and II)
AN

LO + NLO 
expansion result

1/Nc

Includes finite 
 widthΔ

Results:  at low energiesAN

Solid: Inclusive 
Dashed: Elastic

 rises steeply as function of energy above  threshold (here: CM momentum AN Δ k)

Large contribution of  final statesΔ
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 in inclusive  scattering also receives 
contribution from real photon emission channel
AN eN

 expansion: Real photon emission process 
suppressed by  relative to TPE 
1/Nc

1/Nc

Results: Real photon emission

6

Besides the baryon resonances, also non-resonant ⇡N

states can contribute to the TSSA in inclusive eN scat-
tering as intermediate and final states. The importance
of these contributions can be rigorously assessed in the
three regimes I–III. In the low-energy regimes I and II,
one can perform a combined chiral and 1/Nc expansion
using the ⇠ power counting scheme [34, 38], where k and
1/Nc are counted as O(⇠). The pion-baryon coupling
is given by 6gA

5F⇡
k
i
⇡Ĝ

ia, where gA = O(Nc) is the nucleon
isovector axial coupling, k⇡ is the pion momentum, and a

is the pion isospin. The three body phase space brings in
a generic suppression factor k2/(32⇡2). With these ingre-
dients, and using the spin-flavor algebra, one finds that in
the low-energy regimes I and II the contribution of non-
resonant ⇡N states to the eN cross section is suppressed
by at least O(⇠2) with respect to the leading order of the
present calculation, and thus it is consistent to neglect
it. In the intermediate-energy regime III, where the pion
momenta are O(N0

c ) and not small, the suppression is no
longer as e↵ective, and non-resonant ⇡N states can con-
tribute at subleading order of the calculation performed
in this work. If one limits oneself to the final states N

and � as in this work, then the calculation only misses
the ⇡N continuum in the box diagram, and those are
only a↵ecting subleading contributions in regime III.

The numerical boundaries of these regimes in the eN

CM momentum k, Eq. (8), are as follows: The � thresh-
old

p
s = m� = 1.23 GeV is at k = 0.26 GeV; the

generic N
⇤ threshold

p
s = mN⇤ ⇡ 1.5 GeV is at k ⇡

0.46 GeV. The expansion scheme of regime II should be
applicable for 0.26 < k . 0.35 GeV; that of regime III for
0.3 . k . 0.6 GeV [41]. The quality of the approxima-
tion at upper end of the CM momentum ranges depends
on the size of N

⇤ contributions, which cannot be esti-
mated with the present method.

B. Amplitude and cross section

The scattering amplitude for the process eN !

e
0
B (B = N,�) in the CM frame of the eN collision

(see Fig. 1) is denoted by

M(kf ,ki|�;SfSf3If3;SiSi3Ii3). (15)

Here � is the electron helicity – the spin projection on ki

in the initial state and kf in the final state, which is con-
served in the scattering process (the electron mass is ne-
glected). SiSi3Ii3 are the spin-isospin quantum numbers
of the initial nucleon state, where Si =

1
2 and Ii3 = ±

1
2

for proton/neutron. SfSf3If3 are the quantum numbers
of the final baryon state, with Sf =

1
2 or 3

2 for N or �,
and If3 = Ii3. The spins of the initial and final baryons
are quantized along a common axis, which can be chosen
e.g. as the direction of the initial momenta in the CM
frame. The di↵erential cross section for the scattering of
unpolarized electrons on polarized nucleons, Eq. (4), is

e

N, ∆

N, ∆

N, ∆N, ∆

N, ∆

(b)

N(a)

e

e

e

e

e

N

N

e

e

e

i f

f ifi

f i

e

e e

γ

γ

∆

N

NNN

n

N(c)

FIG. 2. Inclusive electron-nucleon scattering cross section
with N and � final states in the 1/Nc expansion in the kine-
matic regimes described in Sec. III A. (a) Spin-independent
cross section from square of e2 amplitudes. The circle denotes
the electromagnetic current matrix element between baryon
states. (b) Spin-dependent cross section from interference of
e4 and e2 amplitudes. (c) Interference of real photon emission
from electron and baryon (not included in this work).

obtained as3

d�

d⌦
=

|kf |

64⇡2|ki|s

X

SfSf3

X

S̄i3Si3

⇢(Si3S̄i3)
1

2

X

�

⇥M
⇤(kf ,ki|�;SfSf3;SiS̄i3) M(kf ,ki|�;SfSf3;SiSi3).

(16)

The initial nucleon spin projection is averaged over with
the spin density matrix

⇢(Si3S̄i3) =
1

2

⇥
�(Si3S̄i3) + a · �(Si3S̄i3)

⇤
, (17)

where a is nucleon spin 3-vector in Eq. (4) in the CM
frame and � are the Pauli matrices. The unpolarized

3 The amplitude Eq. (15) and the cross section Eq. (16) use the
relativistic normalization convention for the electron and baryon
momentum states, hp0|pi = 2p0(2⇡)3�(3)(p0 � p). Reference [41]
used the nonrelativistic normalization hp0|pi = (2⇡)3�(3)(p0 �p)
for the baryon states. The relativistic convention used here is
more transparent for keeping track of kinematic e↵ects caused
by the N–� mass di↵erence, which appear in higher orders of
the 1/Nc expansion.

Interference of Virtual Compton Scattering 
and Bethe-Heitler amplitudes

Im (VCS)  above  threshold≠ 0 Δ

 expansion guides analysis and interpretation of TPE processes1/Nc



11Summary

Computed/analyzed  from TPE in  scattering in resonance region 
in systematic approach based on  expansion

AN eN
1/Nc

 predicted to be  , should be measurableAN ∼ 10−2

Interesting features that could be studied experimentally

Separate contributions of  and  final states in spin-dependent cross section (= numerator)N Δ

Energy and angular dependence of spin-dependent cross section and AN

Isospin dependence proton-neutron of spin-dependent cross section and AN

Transition from resonance to DIS region - qualitative changes?

Possible theoretical improvements

Higher-order  corrections in intermediate-energy regime →  states, real  emission1/Nc N* γ

Combined chiral and  expansion in low-energy regime →  states1/Nc πN

→ Discussion



12Applications and extensions

Applications to TPE and positron physics

 expansion enables systematic approach to  scattering in resonance region: 
Organizes kinematics, channels , currents, calculation
1/Nc eN

Δ ↔ πN

Beam normal spin asymmetry: Pure TPE effect, , enhanced by collinear logarithm∝ m𝗅𝖾𝗉𝗍𝗈𝗇

Charge asymmetry of  cross section: Involves also Re(TPE), obtained dispersion integrale±N

Electroweak processes,  exchangeγZ

Applications to hadronic physics

Transition between resonance and DIS regions, quark-hadron duality

Spin effects in intermediate-energy  scatteringeN


