Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to \{\varphi_i\} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j.$$

Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to {\varphi_i} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_{i}^{*} \tilde{\Gamma}_{ij}^{\alpha} b_{j}.$$

*) E.g.: for $\gamma N \rightarrow \varphi N$, we have 4 amplitudes b_1, \ldots, b_4 vs. 16 observables:

$$\begin{split} &\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{G}, \check{H}, \check{F}, \\ &\check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}, \check{T}_{x'}, \check{T}_{z'}, \check{L}_{x'}, \check{L}_{z'} \}. \end{split}$$

Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to {\varphi_i} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_{i}^{*} \tilde{\Gamma}_{ij}^{\alpha} b_{j}.$$

*) E.g.: for $\gamma N \rightarrow \varphi N$, we have 4 amplitudes b_1, \ldots, b_4 vs. 16 observables:

$$\begin{split} &\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{G}, \check{H}, \check{F}, \\ &\check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}, \check{T}_{x'}, \check{T}_{z'}, \check{L}_{x'}, \check{L}_{z'} \}. \end{split}$$

*) <u>Heuristics</u> \rightarrow Need at least $2N_{\mathcal{A}}$ observables to solve for the b_i uniquely ('complete experiments'), but which ones to select? \hookrightarrow Use graph-techniques ...

Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to {\varphi_i} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j.$$

*) E.g.: for $\gamma N \rightarrow \varphi N$, we have 4 amplitudes b_1, \ldots, b_4 vs. 16 observables:

$$\begin{split} &\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{G}, \check{H}, \check{F}, \\ &\check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}, \check{T}_{x'}, \check{T}_{z'}, \check{L}_{x'}, \check{L}_{z'} \}. \end{split}$$

Heuristics → Need at least 2N_A observables to solve for the b_i uniquely ('complete experiments'), but which ones to select?
 → Use graph-techniques ...

Truncated partial-wave analysis (TPWA)

*) Approach: cut off partial-wave series for the full spin-amplitudes, e.g. helicity amplitudes

$$egin{aligned} \mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) &= e^{i(\lambda-\mu)\phi} \ & imes \sum_{j=\max(|\lambda|,|\mu|)}^{\infty} (2j+1)\mathcal{T}^j_{\mu,\lambda}(s) \, d^j_{\mu,\lambda}(heta), \end{aligned}$$

 $\begin{array}{l} (\text{where } \lambda := \lambda_1 - \lambda_2, \ \mu := \mu_1 - \mu_2 \\ \text{and } \{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.), \\ \text{at some maximal angular momentum} \\ j_{\max} \ (\ell_{\max}) \ \text{and search for complete} \\ \text{experiments for determination of} \\ \text{the } \Big\{\mathcal{T}_{\mu,\lambda}^j\Big\}. \end{array}$

Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to {\varphi_i} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j.$$

*) E.g.: for $\gamma N \rightarrow \varphi N$, we have 4 amplitudes b_1, \ldots, b_4 vs. 16 observables:

$$\begin{split} &\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{G}, \check{H}, \check{F}, \\ &\check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}, \check{T}_{x'}, \check{T}_{z'}, \check{L}_{x'}, \check{L}_{z'} \}. \end{split}$$

Heuristics → Need at least 2N_A observables to solve for the b_i uniquely ('complete experiments'), but which ones to select?
 → Use graph-techniques ...

Truncated partial-wave analysis (TPWA)

*) Approach: cut off partial-wave series for the full spin-amplitudes, e.g. helicity amplitudes

$$egin{aligned} \mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) &= e^{i(\lambda-\mu)\phi} \ & imes \sum_{j=\max(|\lambda|,|\mu|)}^{\infty} (2j+1)\mathcal{T}^j_{\mu,\lambda}(s) \, d^j_{\mu,\lambda}(heta), \end{aligned}$$

 $\begin{array}{l} (\text{where } \lambda := \lambda_1 - \lambda_2, \ \mu := \mu_1 - \mu_2 \\ \text{and } \{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.), \\ \text{at some maximal angular momentum} \\ j_{\max} \ (\ell_{\max}) \ \text{and search for complete} \\ \text{experiments for determination of} \\ \text{the } \Big\{\mathcal{T}_{\mu,\lambda}^j\Big\}. \end{array}$

*) For $\gamma N \to \varphi B$: use expansion into electric and magnetic multipoles $\{E_{\ell\pm}, M_{\ell\pm}\}.$

Complete-experiment analysis (CEA)

*) Generic meson-prod. reaction $\mathcal{P}N \to {\varphi_i} B$, described by $N_{\mathcal{A}}$ spin-amplitudes $b_1, \ldots, b_{N_{\mathcal{A}}}$, accompanied by $N_{\mathcal{A}}^2$ polarization observables

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j.$$

*) E.g.: for $\gamma N \rightarrow \varphi N$, we have 4 amplitudes b_1, \ldots, b_4 vs. 16 observables:

$$\begin{split} &\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{G}, \check{H}, \check{F}, \\ &\check{C}_{x'}, \check{C}_{z'}, \check{O}_{x'}, \check{O}_{z'}, \check{T}_{x'}, \check{T}_{z'}, \check{L}_{x'}, \check{L}_{z'} \}. \end{split}$$

<u>Heuristics</u> → Need at least 2N_A observables to solve for the b_i uniquely ('complete experiments'), but which ones to select?
 → Use graph-techniques ...

Truncated partial-wave analysis (TPWA)

*) Approach: cut off partial-wave series for the full spin-amplitudes, e.g. helicity amplitudes

$$egin{aligned} \mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) &= e^{i(\lambda-\mu)\phi} \ & imes \sum_{j=\max(|\lambda|,|\mu|)}^{\infty} (2j+1)\mathcal{T}^j_{\mu,\lambda}(s) \, d^j_{\mu,\lambda}(heta), \end{aligned}$$

 $\begin{array}{l} (\text{where } \lambda := \lambda_1 - \lambda_2, \ \mu := \mu_1 - \mu_2 \\ \text{and } \{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.), \\ \text{at some maximal angular momentum} \\ j_{\max} \ (\ell_{\max}) \ \text{and search for complete} \\ \text{experiments for determination of} \\ \text{the } \Big\{\mathcal{T}_{\mu,\lambda}^j\Big\}. \end{array}$

 *) For γN → φB: use expansion into electric and magnetic multipoles {E_{ℓ±}, M_{ℓ±}}.

Testing completeness of photoproduction TPWA

*) I-O studies using model-data (MAID2007, $\gamma p \rightarrow \pi^0 p$), set: $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{F}\}$

Testing completeness of photoproduction TPWA

*) I-O studies using model-data (MAID2007, $\gamma p \rightarrow \pi^0 p$), set: $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{F}\}$

*) Bayesian inference for (real) γp → ηp data, set {σ₀, Σ, Ť, Ĕ, F, Ğ}
 cf.: [P. Kroenert, YW, F. Afzal and A. Thiel, Phys. Rev. C 109, no.4, 045206 (2024)]

Y. Wunderlich

Complete experiments - Summary

Consider *channel-space* $\{ |\pi N\rangle, |\gamma N\rangle, |\pi \pi N\rangle \}$, i.e.:

$$(\mathcal{T}_{fi}) = \begin{bmatrix} \mathcal{T}_{\pi N, \pi N} & \mathcal{T}_{\pi N, \gamma N} & \mathcal{T}_{\pi N, \pi \pi N} \\ \mathcal{T}_{\gamma N, \pi N} & \mathcal{T}_{\gamma N, \gamma N} \simeq 0 & \mathcal{T}_{\gamma N, \pi \pi N} \\ \mathcal{T}_{\pi \pi N, \pi N} & \mathcal{T}_{\pi \pi N, \gamma N} & \mathcal{T}_{\pi \pi N, \pi \pi N} \end{bmatrix}$$

Consider *channel-space* $\{ |\pi N\rangle, |\gamma N\rangle, |\pi \pi N\rangle \}$, i.e.:

$$(\mathcal{T}_{fi}) = \begin{bmatrix} \mathcal{T}_{\pi N, \pi N} & \mathcal{T}_{\pi N, \gamma N} & \mathcal{T}_{\pi N, \pi \pi N} \\ \mathcal{T}_{\gamma N, \pi N} & \mathcal{T}_{\gamma N, \gamma N} \simeq 0 & \mathcal{T}_{\gamma N, \pi \pi N} \\ \mathcal{T}_{\pi \pi N, \pi N} & \mathcal{T}_{\pi \pi N, \gamma N} & \mathcal{T}_{\pi \pi N, \pi \pi N} \end{bmatrix}$$

→ Measure individual complete experiments with perfect *phase-space coverage and overlap* among individual reactions (complete exp.'s determinable using *graphs*):

Reaction	Example complete experiment (yields $ b_i $ & ϕ_{ij})
$\pi N \rightarrow \pi N \ (N_A = 2)$	$\sigma_0, \hat{P}, \hat{R}, \hat{A}$
$\pi N \rightarrow \pi \pi N \ (N_A = 4)$	$\sigma_0, \check{P}_y, \check{P}_z, \check{P}_{x'}, \check{P}_{y'}, \check{\mathcal{O}}_{yy'}, \check{\mathcal{O}}_{zy'}, \check{\mathcal{O}}_{yz'}$
$\gamma N ightarrow \pi N \ (N_{\mathcal{A}} = 4)$	$\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}$
$\gamma N \rightarrow \pi \pi N \ (N_{\mathcal{A}} = 8)$	$\sigma_{0},\check{P}_{y},\check{P}_{y'},\check{\mathcal{O}}_{yy'}^{\odot},\check{\mathcal{O}}_{yy'},\check{P}_{y'}^{\odot},\check{P}_{y}^{\odot},I^{\odot},\check{P}_{x},\check{P}_{z},\check{P}_{x'},\check{P}_{x}^{s},\check{P}_{x}^{\odot},\check{P}_{z}^{c},\check{P}_{z}^{\odot},\check{P}_{x'}^{\odot}$

 \Rightarrow For these 4 reactions, we have $\mathcal{T}_{fi} = e^{i\phi_{fi}}\tilde{\mathcal{T}}_{fi}$, with $\tilde{\mathcal{T}}_{fi}$ <u>fixed</u>.

Consider *channel-space* $\{|\pi N\rangle, |\gamma N\rangle, |\pi \pi N\rangle\}$, i.e.:

$$(\mathcal{T}_{fi}) = \begin{bmatrix} \mathcal{T}_{\pi N, \pi N} & \mathcal{T}_{\pi N, \gamma N} & \mathcal{T}_{\pi N, \pi \pi N} \\ \mathcal{T}_{\gamma N, \pi N} & \mathcal{T}_{\gamma N, \gamma N} \simeq 0 & \mathcal{T}_{\gamma N, \pi \pi N} \\ \mathcal{T}_{\pi \pi N, \pi N} & \mathcal{T}_{\pi \pi N, \gamma N} & \mathcal{T}_{\pi \pi N, \pi \pi N} \end{bmatrix}$$

 → Measure individual complete experiments with perfect *phase-space coverage and overlap* among individual reactions (complete exp.'s determinable using *graphs*):

Reaction	Example complete experiment (yields $ b_i $ & ϕ_{ij})
$\pi N \rightarrow \pi N \ (N_A = 2)$	$\sigma_0, \hat{P}, \hat{R}, \hat{A}$
$\pi N \rightarrow \pi \pi N \ (N_{\mathcal{A}} = 4)$	$\sigma_0, \check{P}_y, \check{P}_z, \check{P}_{x'}, \check{P}_{y'}, \check{\mathcal{O}}_{yy'}, \check{\mathcal{O}}_{zy'}, \check{\mathcal{O}}_{yz'}$
$\gamma N ightarrow \pi N \ (N_{\mathcal{A}} = 4)$	$\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}$
$\gamma N \rightarrow \pi \pi N \ (N_{\mathcal{A}} = 8)$	$\sigma_{0},\check{P}_{y},\check{P}_{y'},\check{\mathcal{O}}_{yy'}^{\odot},\check{\mathcal{O}}_{yy'},\check{P}_{y'}^{\odot},\check{P}_{y}^{\odot},I^{\odot},\check{P}_{x},\check{P}_{z},\check{P}_{x'},\check{P}_{x}^{s},\check{P}_{x}^{\circ},\check{P}_{z}^{c},\check{P}_{z}^{\circ},\check{P}_{z}^{\odot},\check{P}_{x'}^{\odot}$

 \Rightarrow For these 4 reactions, we have $\mathcal{T}_{fi} = e^{i\phi_{fi}}\tilde{\mathcal{T}}_{fi}$, with $\tilde{\mathcal{T}}_{fi}$ <u>fixed</u>.

→ Fit at least two (or more) complementary ED models (BnGa, JüBo, ...), which have to have as good unitarity-constraints as possible, to this database

 \Rightarrow Missing phase-information $e^{i\phi_{ff}}$ fixed and resonance-spectrum (hopefully) unique!

Consider *channel-space* $\{|\pi N\rangle, |\gamma N\rangle, |\pi \pi N\rangle\}$, i.e.:

$$(\mathcal{T}_{fi}) = \begin{bmatrix} \mathcal{T}_{\pi N, \pi N} & \mathcal{T}_{\pi N, \gamma N} & \mathcal{T}_{\pi N, \pi \pi N} \\ \mathcal{T}_{\gamma N, \pi N} & \mathcal{T}_{\gamma N, \gamma N} \simeq 0 & \mathcal{T}_{\gamma N, \pi \pi N} \\ \mathcal{T}_{\pi \pi N, \pi N} & \mathcal{T}_{\pi \pi N, \gamma N} & \mathcal{T}_{\pi \pi N, \pi \pi N} \end{bmatrix}$$

 → Measure individual complete experiments with perfect *phase-space coverage and overlap* among individual reactions (complete exp.'s determinable using *graphs*):

Reaction	Example complete experiment (yields $ b_i $ & ϕ_{ij})
$\pi N ightarrow \pi N \ (N_{\mathcal{A}} = 2)$	$\sigma_0, \hat{P}, \hat{R}, \hat{A}$
$\pi N \rightarrow \pi \pi N \ (N_{\mathcal{A}} = 4)$	$\sigma_0, \check{P}_y, \check{P}_z, \check{P}_{x'}, \check{P}_{y'}, \check{\mathcal{O}}_{yy'}, \check{\mathcal{O}}_{zy'}, \check{\mathcal{O}}_{yz'}$
$\gamma N ightarrow \pi N \ (N_{\mathcal{A}} = 4)$	$\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}$
$\gamma N \rightarrow \pi \pi N \ (N_{\mathcal{A}} = 8)$	$\sigma_{0},\check{P}_{y},\check{P}_{y'},\check{\mathcal{O}}_{yy'}^{\odot},\check{\mathcal{O}}_{yy'},\check{P}_{y'}^{\odot},\check{P}_{y}^{\odot},I^{\odot},\check{P}_{x},\check{P}_{z},\check{P}_{x'},\check{P}_{x}^{s},\check{P}_{x}^{\odot},\check{P}_{z}^{c},\check{P}_{z}^{\odot},\check{P}_{x'}^{\odot}$

 \Rightarrow For these 4 reactions, we have $\mathcal{T}_{fi} = e^{i\phi_{fi}}\tilde{\mathcal{T}}_{fi}$, with $\tilde{\mathcal{T}}_{fi}$ fixed.

- \hookrightarrow Fit at least two (or more) complementary ED models (BnGa, JüBo, ...), which have to have *as good unitarity-constraints as possible*, to this database
 - \Rightarrow Missing phase-information $e^{i\phi_{fi}}$ fixed and resonance-spectrum (hopefully) unique!

<u>Issues:</u> - Can we assume perfect time-reversal inv., to relate 3 \rightarrow 2 to 2 \rightarrow 3 processes?

- 3 ightarrow 3-process $\pi\pi N
ightarrow \pi\pi N$ unmeasurable. Does this hurt the proposal?