

Studies of Time-like Baryon Transition Form Factors with HADES

Izabela Ciepał

Combined Partial Wave Analysis of hadronic 2-pion channels and Dalitz decays

Bn-Ga PWA: *pwa.hisp.uni-bonn.de* 2π data included in the fit

Reaction	Observable	W (GeV)		
$\gamma p o \pi^0 \pi^0 p$	DCS, Tot	1.2 - 1.9	MAMI	
$\gamma p o \pi^0 \pi^0 p$	\mathbf{E}	1.2 - 1.9	MAMI	
$\gamma p o \pi^0 \pi^0 p$	DCS,Tot	1.4 - 2.38	CB-ELSA	
$\gamma p o \pi^0 \pi^0 p$	P,H	1.45 - 1.65	CB-ELSA	
$\gamma p o \pi^0 \pi^0 p$	T, P_x, P_y	1.45 - 2.28	CB-ELSA	
$\gamma p o \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45 - 1.8	CB-ELSA	
$\gamma p o \pi^0 \pi^0 p$	$P_{y}, P_{y}^{c}, P_{y}^{s}$ (4D)	1.45 - 1.8	CB-ELSA	
$\gamma p ightarrow \pi^+\pi^- p$	DCS	1.7 - 2.3	CLAS	
$\gamma p ightarrow \pi^+\pi^- p$	I^c, I^s	1.74 - 2.08	CLAS	
$\pi^- p o \pi^0 \pi^0 n$	DCS	1.29 - 1.55	Crystal Bal	1
$\pi^- p ightarrow \pi^+ \pi^- n$	DCS	1.45 - 1.55	HADES	
$\pi^- p o \pi^0 \pi^- p$	DCS	1.45 - 1.55	HADES	

- s-channel D₁₃ (N(1520) 3/2⁻) dominant contribution
- N(1520) \rightarrow Np BR=12.2 +/- 2 %
- N(1535) \rightarrow N ρ BR=3.2 +/- 0.6 %

8 new entries:

branching ratios of

N(1440) N(1535) N(1520)

to 2π channels ($\Delta\pi$, N ρ , N σ)

reference ρ mass spectrum for e+e- analysis

Time-like transition form factors for nucleon resonances

pp → **ppe+e-** @1.25 GeV

effective eTFF

$$\frac{\mathrm{d}\Gamma(\Delta \to \mathrm{Ne}^{+}\mathrm{e}^{-})}{\mathrm{d}q^{2}} = f\left(m_{\Delta}, q^{2}\right) \left(\left|G_{M}^{2}\left(q^{2}\right)\right| + 3\left|G_{E}^{2}\left(q^{2}\right)\right| + \frac{q^{2}}{2m_{\Delta}^{2}}\left|G_{C}^{2}\left(q^{2}\right)\right|\right)$$
QED

 $\pi^{-}p \rightarrow ne+e-$ @0.7 GeV/c

- VMD2 (strict VMD) overestimates data below 400 MeV
- 2-component VMD (VMD1) gives reasonable description
- Z&W: Lagrangian model very promising
- R&P: Time-like FF dominant pion cloud contribution (pion emFF)
- S. Leupold: FF based on dispersive framework

Virtual photon polarization

HADES Coll. arXiv:2205.15914 [nucl-ex]

$$\frac{d^{3}\sigma}{dM_{ee}d\Omega_{\gamma_{*}}d\Omega_{e}} \sim |\mathsf{A}|^{2} = \frac{e^{2}}{Q^{4}} \sum_{\Lambda\Lambda'} \rho_{\Lambda\Lambda'}^{(H)} \rho_{\Lambda\Lambda'}^{(dec)} \mathbf{QED: } \gamma^{*} \rightarrow \mathbf{e+e-}$$
$$\mathbf{R} \rightarrow \mathbf{N} + \gamma^{*}$$

 $|A|^{2} \propto 8k^{2} \left[1 - \rho_{11} + (3\rho_{11} - 1)\cos^{2}\Theta + \sqrt{2}Re\rho_{10}\sin 2\Theta\cos\phi + Re\rho_{1-1}\sin^{2}\Theta\cos 2\phi\right]$

 SDME ρ₁₁, ρ₁₀, ρ₁₋₁ extracted from experiment taking into account acceptance and efficiency (A. Sarantsev) in 3 bins in cosθγ*

Backup

Time-like transition form factors for hyperons

 $pp \rightarrow pp\pi^-e^+e^-$ @4.5 GeV

Jana Rieger (PhD)

Dalitz decays of baryon resonances Vector Meson Dominance Models (VMD)

hadrons \longleftrightarrow photons

Meson Dalitz decays: (Crystal Ball/TAPS, A2, Na60 data), many theoretical studies **Baryons** Dalitz decays: (Hades), most of the calculations of eTFF are based on VMD

etFF of baryons: models

Covariant quark model +VMD T. Pena & G. Ramalho

N-Δ(1232): *Phys.Rev.* D93, 033004 (2016) N-N(1520): *Phys. Rev.* D95, 014003 (2017) N-N(1535): *Phys.Rev.* D101, 114008 (2020)

Dispersion theory S. Leupold et al.

S. Leupold arXiv:2401.17756 (2024)

Two-component Lagrangian model

M. Zetenyi & G. Wolf

PRC 86, 065209 (2012) PRC 104, 015201 (2021)

microscopic calculations of $\pi N \rightarrow \ Ne+e-$

baryon resonances

Virtual photon polarization

E. Speranza et al. Phys. Lett. B764, 282 (2017)

angular distribution of e+e- \rightarrow polarization of $\gamma^* \rightarrow$ spin density matrix elements ($\rho_{\Lambda\Lambda}$)

$$\pi \mathbf{N} \to \mathbf{N} \boldsymbol{\gamma}^* \to \mathbf{N} \mathbf{e}^+ \mathbf{e}^- \qquad \frac{d^3 \sigma}{dM_{ee} d\Omega_{\gamma_*} d\Omega_e} \sim |\mathbf{A}|^2 = \frac{e^2}{Q^4} \sum_{\Lambda \Lambda'} \rho_{\Lambda \Lambda'}^{(H)} \rho_{\Lambda \Lambda'}^{(dec)} \quad \mathbf{QED:} \ \boldsymbol{\gamma}^* \to \mathbf{e}^+ \mathbf{e}^-$$

Angular distribution of the lepton pair:

$$|A|^2 \propto 8k^2 \left[1 - \rho_{11} + (3\rho_{11} - 1)\cos^2\Theta + \sqrt{2}Re\rho_{10}\sin 2\Theta\cos\phi + Re\rho_{1-1}\sin^2\Theta\cos 2\phi\right]$$

- → $\rho_{\Lambda\Lambda}$ depends on γ^* polarization
- → $\rho_{\Lambda\Lambda}$ are combination of G_E , G_M , G_C
- → the angular distribution is sensitive to J^P of the resonance
- \rightarrow can be obtain from fit to the experimental angular distribution

OUTLOOK HADES Physics Program with Pion Beams explore the 3rd resonance region $\sqrt{s} = 1.7$ **GeV/c²**

2014 2025

CBM@ SIS100 pp @ 30 GeV

- prod. cross sec. higher than at SIS18:
 σ (Σ*,Λ*) ~1 mb
- much higher luminosity

Beam energy scan 2025: continuation and extension to 3rd resonance region

1) Baryon-meson couplings:

- 2) $\rightarrow \pi\pi N$, wh, ηn , $K^0\Lambda$, $K^0\Sigma$, ...
- 3) including neutral mesons (ECAL),
 - $\rightarrow \rho R$ couplings S31(1620),
- 4) D33(1700), P13(1720),..
- 5) Hyperon polarization: Λ , Σ

6) Exotic states:

- → the lowest glueballs, 4q systems, hybrids , bound states of mesons: $f_0(500), f_0(980), a_0(980), f0(1370),...$
- → unknown region of invM($\pi\pi$) ~1 GeV very precise data needed !