

Measurements of fragmentation functions at BESII

Xiaorong Zhou (on behalf of BESIII Collaboration) University of Science and Technology of China

York, UK, 2024.6.17-2024.6.21

Several open questions about QCD

• **<u>Confinement</u>**, no existing isolated quarks or gluons

• **Nucleon structure**, what is the origin of nucleon spin and mass in terms of quarks and gluons degree of freedom

Spin: How does nucleon spin emerge

Mass:

Higgs mechanism gives only ~few%

Fragmentation Functions (FFs)

• $D_q^h(z)$: describe the fragmentation of an quark into an hadron, where the hadron carries a fraction $z = 2E_h/\sqrt{s}$ of parton's momentum

Access FFs with QCD factorization

- Depend on unpolarized PDFs
- Leading access to gluon FF
- Parton momenta not directly known
- SIA @ e⁺e⁻: the cleanest input for FFs fitting

pp

PDF

Nucleon tomography

LO expansion of TMDs

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \mathbf{\bullet}$		$h_I^{\perp} = 1 - 1$ Boer-Mulders
	L		$g_1 = \underbrace{\bullet}_{\text{Helicity}} \cdot \cdot$	$h_{1L}^{\perp} = \bigcirc - \bigcirc -$ Worm Gear
	Т	$f_{1T}^{\perp} = \underbrace{\bullet}^{\bullet} - \underbrace{\bullet}_{\bullet}$ Sivers	$g_{1T} = -$	$h_{1} = \underbrace{{}_{I}}_{Transversity} - \underbrace{{}_{Transversity}}_{h_{1T}} + \underbrace{{}_{Transversity}}_{Pretzelosity}$

→ Nucleon Spin → Quark Spin

FFs studies at an unpolarized e⁺e⁻ collider

• Separation of TMD factorization in SIDIS:

$$\sigma^{\ell N \to \ell h X} = \hat{\sigma} \otimes PDF \otimes FF$$

$$A_N^{\text{Sivers}} \propto \langle \sin(\phi_h - \phi_s) \rangle_{UT} \propto f_{1T}^{\perp} \otimes D$$

$$A_N^{\text{Collins}} \propto \langle \sin(\phi_h + \phi_s) \rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_N^{\text{Pretzelosity}} \propto \langle \sin(3\phi_h - \phi_s) \rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

- To accurately extract Parton Distribution Functions (PDFs), more precise FFs are required.
- Two types of fragmentation functions can be studied at an unpolarized e^+e^- collider: *D* and H_1^{\perp} .

BEPCII/BESIII

 $\sigma_p / p = 0.5\%$ at 1

GeV

 $\sigma_{spatial}$: 1.48

cm

(update to 60 ps

with MRPC)

Double-ring, symmetry, multi-bunch e⁺ e⁻ collider $E_{cm} = 1.84$ to 4.95 GeV Energy spread: $\Delta E \approx 5 \times 10^{-4}$ Peak luminosity in continuously operation $@E_{cm}=$ 3.77 GeV: 1.1×10^{33} cm⁻²s⁻¹

Data samples collected at BESIII

Unpolarized FFs measurements at BESIII

Experimental observable at e⁺e⁻ colliders:

$$\frac{1}{\sigma_{tot}(e^+e^- \to hadrons)} \frac{d\sigma(e^+e^- \to h + X)}{dP_h}$$

h is a particular type of hadron such as π^0 , $\pi^{+/-}$, K^{+/-}...

• At Leading order $\sim \sum_{q} e_q^2 D_1^{h/q}(z)$

Unpolarized fragmentation function (D)

Fractional energy of hadron $z = 2E_h/\sqrt{s}$

World π & K data on e⁺e⁻

- Precision data includes charged π , K
- Data sets at $\sqrt{s} < 10 \text{ GeV } e^+e^-$ collision ?
 - high z data sets ?
- R scan data @ BESIII: ~10 pb⁻¹ @ each \sqrt{s}

Pion FF: Best known FF

10-2

0.2

0.4

 \mathbf{z}

12

0.8

• High *z* data ?

Strange quark polarization puzzle

- Strange quark density function: $\Delta s(x) + \Delta \overline{s}(x)$
 - Inclusive DIS: only proton PDF
 - negative for all values of x
 - Semi-inclusive DIS: proton PDF & kaon FF
 - DSS FFs: positive for most of measured x
 - HKNS FF: negative
 - JAM FFs: negative
- Reliable FFs knowledge ? Need more efforts

Analysis at BESIII

> Normalized differential cross section (take π^0 as an example):

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma_{\pi^0}}{dp_{\pi^0}} = \frac{N_{\pi^0}}{N_{\text{had}}} \frac{1}{\Delta p_{\pi^0}}$$

► Hardronic events N_{had} : $R \equiv \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

Inclusive π^0/K_S^0 production

Results: inclusive π^0/K_s^0

Theory support: Hongxi Xing, Daniele Anderle **Compared with theoretical estimation**

PRL 130 231901(2023)

1.0

Results: inclusive π^0/K_s^0

PRL 130 231901(2023)

- From theory side: fitting with BESIII data, hadron
- mass effect, large *z* re-summation, and so on
- From experimental side
 - Primary hadron vs from resonance decay
 - \Rightarrow measure $e^+ e^- \rightarrow \rho(\omega, \phi) + X$, and so on
 - Contribution of vector states ρ^* , ω^* and ϕ^*
 - $\Rightarrow e^+ e^- \rightarrow \rho^* / \omega^* / \phi^* \rightarrow h + X$

World η data on e⁺e⁻

- η FF @ NLO: data at $\sqrt{s} > 10$ GeV e⁺e⁻ collision
 - Missing theory uncertainty
- Theory improvement:
 - NNLO accuracy, hadron mass correction & higher twist contributions
- BESIII results and its possible impact ?

Inclusive η **production at BESIII**

- PRD83 (2001) 034002 prediction vs. BESIII data: tension !
- BESIII fit: detail @ arXiv:2404.11527
 - $\sqrt{s} > 10 GeV e^+e^- data + BESIII data$
 - NNLO accuracy, hadron mass correction & higher twist contributions

Prospects of FFs at BESIII

• Higher center-of-mass energy

- Broader hard scale Q coverage
- heavy flavors: Λ , Λ_c , D^0
- Hadron mass correction is smaller

• High luminosity

- From exploratory to precision measurements
- Multi-dimensional binning of the measurements
 - Currently mainly on z and Q², P_t of hadron is crucial (now with Gaussian assumption)

Collins FFs

- Spin of quark correlates with hadron transverse momentum
 - ➔ translates into azimuthal anisotropy of final state hadrons
- The possibilities for finding a hadron produced from a transversely polarized quark:

$$D_{hq^{\dagger}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$

- Unpolarized fragmentation function (*D*)
- Fractional energy of hadron $z = 2E_h/\sqrt{s}$

• Collins fragmentation function (H_1^{\perp})

• Transverse momentum of the hadron $P_{h\perp}$

Collins effects in e⁺e⁻ annihilation

• At BESIII, the correlation of quark and anti-quark Collins functions are searched with back-to back hadrons:

$$e^+e^- \to q\bar{q} \to h_1h_2X$$
$$\Rightarrow \sigma \propto \cos(2\phi_0) H_1^{\perp}(z_1) \otimes H_2^{\perp}(z_2)$$

Collins effects at BESIII

To avoid detection-related effects, experimentally, a double ratio measurement was proposed:

U: pi+&pi- or pi-&pi+ L: pi+&pi+ or pi-&pi-

$$\frac{R^U}{R^{L(C)}} = A\cos(2\phi_0) + B,$$

Summary

- The knowledge of FFs is an important ingredient in our understanding of non-perturbative QCD dynamics. e^+e^- annihilation experiments provide the cleanest environment to measure FFs.
- Two types of fragmentation functions can be studied at BEPCII/BESIII
 Unpolarized fragmentation function
 - ✓Unique Q<10 GeV data
 - ✓ More results from charged π/K and heavy flavor
 - ➤Collins fragmentation function
 - ✓ Essential input in the 3D imaging era of the nucleon structure study
 - ✓ More results from $K\pi + X$ and KK + X

