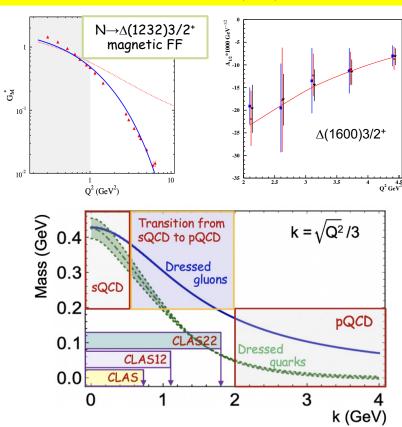
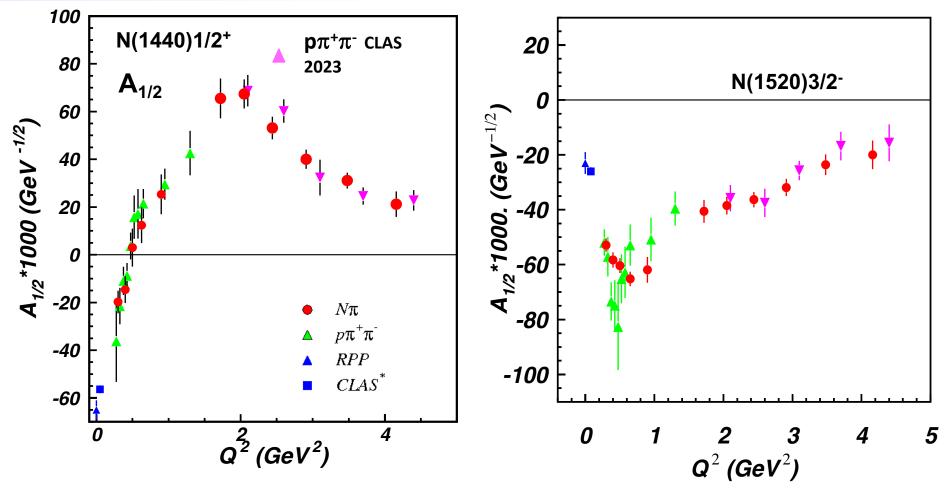

Resonance Electroexcitation Amplitudes and Understanding of Strong QCD


Nucleons and their resonances are the most fundamental three-body systems in Nature. If we don't understand how QCD builds each state in the complete spectrum, then our understanding of the sQCD regime remains incomplete.

- N* photocouplings are sensitive to the long-range components of the N* wavefunction, which are consistent with the expectations of quark models based on SU(6) spin-flavor symmetry (left)
- Results on the Q²-evolution of the γ_νpN* electrocouplings provide insight into the full complexity of the N* wavefunction (right)
- Successful description of the $\gamma_{v}pN^{*}$ electrocouplings for N*'s of different structure for Q²<30 GeV² will allow us to explore the emergence of N* mass and structure from QCD

V. I. Mokeev et al., PRC 108, 025204 (2023), D.S. Carman et al., Particles 6, 416 (2023).

A unique source of information on many facets of sQCD in generating excited nucleon states with different structural features


Nucleon Resonance Electrocouplings from Data on Exclusive Meson Electroproduction of 6 GeV Era with CLAS

Exclusive meson electroproduction channels	Excited proton states	Q ² -ranges for extracted γ _ν pN* electrocouplings, GeV ²
π ⁰ p, π ⁺ n	∆(1232)3/2 ⁺ N(1440)1/2 ⁺ ,N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.16-6.0 0.30-4.16
π + n	N(1675)5/2 ⁻ , N(1680)5/2 ⁺ ,N(1710)1/2 ⁺	1.6-4.5
ηρ	N(1535)1/2 ⁻	0.2-2.9
π ⁺ π ⁻ p	N(1440)1/2+, N(1520)3/2- N(1440)1/2+, N(1520)3/2-, Δ(1600)3/2+ Δ(1620)1/2-, N(1650)1/2-,	0.25-1.50 2.0-5.0
	N(1680)5/2+, ∆(1700)3/2-, N(1720)3/2+, N'(1720)3/2+	0.5-1.5

- The $\gamma_{\rm v}$ pN* electrocouplings have become available from analysis of CLAS data for most N* states in the mass range <1.8 GeV and in a broad range of Q² < 5 GeV².
- Numerical results can be found in: https://userweb.jlab.org/~mokeev/resonance_electrocouplings23 and A.N. Hiller Blin et al, PRC100, 035201 (2019)
- Recently, electroexcitation amplitudes for N* within the mass range up to 1.8 GeV were determined for Q²<5 GeV² at the pole positions within a coupled channel analysis of N π N η , KY photo-/electro- and hadroproduction data in Y-F. Wang et al., arXiv:2404v2 [nucl-th] (see the talk by M. Doering).

Electrocouplings of N(1440)1/2+ and N(1520)3/2- Resonances from π N and π + π -p Electroproduction off Proton Data

Consistent results on the N(1440)1/2+ and N(1520)3/2- electrocouplings from independent studies of the two major πN and $\pi^+\pi^-p$ electroproduction channels with different non-resonant contributions demonstrated the capabilities of the reaction models for their reliable extraction and allow us to evaluate their systematic uncertainties in a nearly model-independent way.

Resonance Electrocouplings from Meson Electroproduction Channels Items for Discussion

- 1. Prospects for extension of reaction models for extraction of the $\gamma_{\nu}pN^*$ electrocouplings from the π^+ n and π^0 p channels to provide results on the Q² evolution of the electrocouplings from 5–10 GeV².
 - <u>Expected data</u>: two-fold differential cross sections and beam asymmetry of quality comparable with the data for Q²<5 GeV².
- 2. Prospects for developing reaction models aimed to determine the γ_v nN* electrocouplings from π -p electroproduction off bound neutron data.
 - <u>Available</u>/<u>expected data</u>: two-fold differential cross sections with data quality highlighted by R.W. Gothe.
- 3. Development of the reaction models for extraction of the $\gamma_v pN^*$ electrocouplings from KA and K Σ electroproduction off protons data for 0.5 GeV²<Q²<7.0 GeV².
 - Expected data: Data availability/quality discussed by D.S. Carman.
- 4. How useful are the results on the contributions from the $\pi\Delta$ and ρp electroproduction channels into the nine one-fold differential $\pi^+\pi^-p$ cross sections deduced from the data fit for the coupled-channel analyses of meson photo-/electro- and hadroproduction?
- 5. What are the prospects to predict π , K, and ground state nucleon 1D and 3D structure functions within approaches under connection to QCD with the basic ingredients checked against the data on π , K, ground state nucleon elastic form factors and transition $\gamma_{\nu} p N^*/\gamma_{\nu} n N^*$ electrocouplings?

