

Helicity couplings from data

- What is the data situation, especially at higher photon virtualities?
- Helicity couplings at the pole
- Helicity couplings from Breit-Wigner parametrizations
- Discussion and questions

Electroproduction Analysis efforts

- **MAID**: electroproduction of pions, eta mesons, and kaons in separate approaches [<u>Tiator 2007</u>]
- JM (JLab) approach: single-pion analysis, double pion analysis [Mokeev, PRC 2023]; Also: unitary isobar model
- **ANL-Osaka:** Single-pion electroproduction, using multi-channel model. [Kamano, Lee, Nakamura, Sato, 2016]
- JBW: simultaneous analysis of multiple electroproduction final states, using multi-channel model
- Bonn-Gatchina: Upcoming calculations

JBW Electroproduction data base

Туре	$N_{ m data}^{\pi^0 p}$	$N_{\rm data}^{\pi^+ n}$	$N_{ m data}^{\eta p}$	$N_{\rm data}^{K\Lambda}$
• ρ_{LT}	45	_	_	—
\mid $\rho_{LT'}$	2768	5068	_	_
$\bullet \sigma_L$	_	2	_	_
\land $d\sigma/d\Omega$	48135	44266	3665	2055
$\mathbf{\nabla} \sigma_T + \epsilon \sigma_L$	384	182	_	204
$\circ \sigma_T$	30	2	_	_
$\Box \sigma_{LT}$	373	138	_	204
$\diamond \sigma_{LT'}$	214	208	_	156
$ ightarrow \sigma_{TT}$	327	123	_	204
∇K_{D1}	1527	_	_	_
• P_Y	_	2	_	—
Total	53804	49989	3665	2823

- Data base grown over decades with recent input mostly by CLAS, MAMI.
- Far from complete: Kinematic gaps & consistency issues. Need to combine information from different (W, Q²) regions
- Need to combine information from simultaneous analysis of different final states $(\pi N/\eta N/K Y/\pi \pi N,...)$ to extract resonance helicity couplings

[mfm]

Partial-Wave Analytic structure

- Branch points indicate thresholds
- Partial-wave amplitudes have more cuts than plane-wave amplitude
- Example: The structure of the P11 amplitude

Helicity Couplings at pole

• (Selected results)

[<u>Yu-Fei Wang et al., 2024</u>] ,Hergenrather, Mai, Mart, Meissner, Roenchen, Workman, MD

Results for the Roper resonance

Charge density structure

[approx./ following Tiator et al., (2009)]

- Reaction independent; background independent
- Always complex
- Often, Im A << Re A
- Usually hard to compare to by QCD approaches

Breit-Wigner helicity couplings _{M₁₋^{1/2} (N(1440))}

- Extract Helicity Couplings (HCs) by fitting Wdependent Breit-Wigner-like functions, for fixed Q².
- Background function (W-dep.)?
- Reaction dependence (of background term)?
- Overlapping resonances (1535 & 1650)?
- Dependence of W range used for fit?
- Example: MAID choice [arXiV:0909.2335]:

$$\begin{split} t_{\gamma\pi}(W) &= t_{\gamma\pi}^{B}(W) + t_{\gamma\pi}^{R}(W) \\ t_{\gamma\pi}^{B,\alpha}(W,Q^{2}) &= v_{\gamma\pi}^{B,\alpha}(W,Q^{2}) \left[1 + it_{\pi N}^{\alpha}(W)\right] \\ t_{\gamma\pi}^{R,\alpha}(W,Q^{2}) &= \\ \bar{\mathcal{A}}_{\alpha}^{R}(W,Q^{2}) \frac{f_{\gamma N}(W)\Gamma_{tot}M_{R}f_{\pi N}(W)}{M_{R}^{2} - W^{2} - iM_{R}\Gamma_{tot}} e^{i\phi_{R}} \end{split}$$

Discussion points

- Data base questions: Need for high-Q² data & polarization observables (talk <u>Lucia Lanza</u>); data base consistency challenges
- JM model/UI Jlab models report consistent BW helicity couplings from different final states, for some resonances. (Talk <u>Mokeev</u>)
- Something similar should be possible for the JBW model: Unique opportunity because different final states are analyzed within the very same amplitude. (Talk <u>Doering</u>)
- How to agree on consistent hadronic decay branching ratios of resonances (helicity couplings strongly depend on this)?
- What is a good background model to be used?
- Use Q² dependent amplitudes with variable n for Qⁿ to let data choose the scaling of helicity couplings & multipoles (?)