Properties of X(3872) from hadronic potentials coupled to quarks

<u>Ibuki Terashima</u> (Tokyo Metropolitan University) Tetsuo Hyodo (Tokyo Metropolitan University)

The formulation of this talk is based on [I. Terashima and T. Hyodo, PhysRevC.108.035204 (2023)]

Numerical calculation by LQCD

Quark-antiquark potentials and hadron-hadron potentials have been studied independently

Exotic hadron X(3872)

There is no restriction by QCD which prohibits the mixing with each d.o.f

States with same quantum numbers mix by definition

Structure of X(3872) [A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, PTEP 2016 (2016)]

- Mixing with quark and hadron degrees of freedom
- Not enough experimental data and lattice QCD results

How about a channel coupling between quark and hadron degrees of freedom like X(3872)?

Channel coupling

- ✓ Formulation according to Feshbach method [H. Feshbach, Ann. Phys. 5, 357 (1958); ibid., 19, 287 (1962)]
- Hamiltonian H with channel between quark potential V^q and hadron V^h

$$H = \begin{pmatrix} T^q & 0\\ 0 & T^h + \Delta \end{pmatrix} + \begin{pmatrix} V^q & V^t\\ V^t & V^h \end{pmatrix}$$

 T^{q}, T^{h} :Kinetic energy Δ :Threshold energy V^{t} :Transition potential

• Schrödinger equation with wave functions of quark and hadron channels $|q\rangle$, $|h\rangle$

$$H\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix} = E\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix}$$

> Two set of equations with quark and hadron channels are obtained

Effective potential

• Eliminate quark channel to obtain an effective Hamiltonian of hadron channel $H^h_{\text{eff}}(E)$

with,
$$H^{h}_{\text{eff}}(E) |h\rangle = E |h\rangle$$
, $V^{h}_{\text{eff}}(E)$ \checkmark No approximation
 $H^{h}_{\text{eff}}(E) = T^{h} + \Delta^{h} + V^{h} + V^{t}G^{q}(E)V^{t}$ \checkmark No approximation
 $G_{q}(E) = (E - (T^{q} + V^{q}))^{-1}$

Quark channel contribution by coupled channels

Coordinate representation with initial relative coordinate r and final r'

$$\langle \boldsymbol{r}_{h}^{\prime} \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}_{h}^{\prime} \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}_{h}^{\prime} \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

> Quark channel contribution. Sum of discrete eigenstates E_n

Energy dependent potential (denominator depends on *E*)
 Non-local potential (numerator depends on *r*, *r*' independently)

Formulation of X(3872)

Wave function ψ and phase shift δ

The wave function $\psi_k(r)$ and the phase shift $\delta(k)$ can be obtained analytically in our formulation

$$\langle \boldsymbol{r}'_{h} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle = \omega(E) \frac{e^{-\mu r}}{r} \frac{e^{-\mu r'}}{r'}$$

• Scattering wave function ψ $\psi_{k}(r) = \frac{\sin[kr + \delta(k)] - \sin \delta(k)e^{-\mu r}}{kr}$

• Phase shift δ

$$k \cot \delta(k) = -\frac{\mu[4\pi m\omega(E) + \mu^3]}{8\pi m\omega(E)} + \frac{1}{2\mu} \left[1 - \frac{2\mu^3}{4\pi m\omega(E)} \right] k^2 - \frac{1}{8\pi m\omega(E)} k^4$$

Scattering length a_0

Result: E_0 dependence of $V_{eff}^h(r, r', E)$

 $\geq E_0$ dependence of exact $\delta(k)$ is large for small E_0

>Binding energy is fixed so that $\delta(k)$ does not change in small k reagion

Result: V^h dependence of exact $\delta(k)$

 $\geq V^h$ dependence of exact $\delta(k)$ is large for small E_0

✓ Quark potential strength $\omega^q = \frac{g_0^2}{E - E_0} \approx -\frac{g_0^2}{E_0} - \frac{Eg_0^2}{E_0^2}$ is suppressed when E_0 is large

Result : Compositeness

Compositeness is also calculatable analytically by considering Lippmann–Schwinger equation or the bound state wave function

Compositeness corresponds to elementary for 0, molecule for 1

When quark-ch. energy is close to the threshold energy of meson creation, effect of the hadron-ch. is great

Quark channel energy	Binding energy [KeV]	Hadron channel potential	Compositeness [dimensionless]	Scattering length [fm]
$\chi_{C1}(2P)$	40	None	0.991	24.5
$\chi_{C1}(2P)$ / 100	40	Attractive	0.719	20.78
$\chi_{C1}(2P)$ / 100	40	None	0.549	17.87
χ _{C1} (2P) / 100	40	Repulsive	0.444	15.77

Let us see the $V_{\text{eff}}^h(\boldsymbol{r},\boldsymbol{r'},E)$

To visualize the effective potential, we need to,

$$V^h_{ ext{eff}}(m{r},m{r'},E) ~~ \sum ~~ V^h_{ ext{eff}}(m{r},E)$$

Choose 2 ways to approximate and compare each in the next steps
 Fixed parameters

- $E_0: \chi_{C_1}(2P)$
- μ : mass of π (lightest exchanging meson)
- g_o : reproduce mass of X(3872)
- $\omega_h = 0$: focus only the effect of the channel coupling

Local approximations

Approximation of non-local potential to local one by two different methods

```
[S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]
```

① Formal derivative expansion

• Express non-local potential in terms of derivatives of delta function by **Taylor expansion** at r = r' directly

2 Derivative expansion by HAL QCD method

- Construct the potential from wave function $\psi_{k_0}(r)$ obtained from Schrödinger equation with non-local potentials at momentum k_0
- Solve for potentials inversely to construct the local potentials

HAL QCD method in detail

Energy dependent

order of derivative

Schrödinger equation with <u>non-local potential</u> at n + 1 points of k_i ($i = 0, 1, \dots, n$)

$$-\frac{1}{2m}\nabla^2\psi_{k_i}(\boldsymbol{r}) + \int d^3\boldsymbol{r'} V_n(\boldsymbol{r}, \boldsymbol{r'}, E)\psi_{k_i}(\boldsymbol{r'}) = E_{k_i}\psi_{k_i}(\boldsymbol{r}) \qquad \text{Unknown: } \psi_{k_i}(\boldsymbol{r})$$

Obtain wavefunctions $\psi_{k_i}(\boldsymbol{r})$

Assume

Wave functions $\psi_{k_i}(r)$ satisfy the Schrödinger equation with local potentials

$$\left(-\frac{1}{2m}\boldsymbol{\nabla}^2 + \underline{V_n(\boldsymbol{r},\boldsymbol{\nabla})}\right)\psi_{k_i}(\boldsymbol{r}) = E_{k_i}\psi_{k_i}(\boldsymbol{r}), \quad \text{Unknown: } V_n(\boldsymbol{r},\boldsymbol{\nabla})$$

• Obtain local potential $V_n(r, \nabla)$ by solving above equation for the potential inversely

Obtain $\psi = \psi_{k_i}$ exactly by solving local Schrödinger equation at $E = E_{k_i}$, so that the $V_n(\mathbf{r}, \nabla)$ reproduces exact phase shift which is derived from $V_n(\mathbf{r}, \mathbf{r'}, E)$.

Result : comparison of $V^{ m HAL}$ and $V^{ m forma}$

0.0

0.0 20 0.1

• Compare approximated potentials for *X*(3872)

• V^{HAL} and V^{formal} from the same non-local potential

Both potentials are attractive in short-range

Strengths of potential are quantitatively different $(J)_{\text{period}} = -0.2$ $(0)_{\text{r}} = -0.3$ $(0)_{\text{r}} = -0.4$ $(0)_{\text{r}} = -0.4$ $(1)_{\text{r}} = -0.4$ $(1)_{\text{r}} = -0.5$ $(1)_{\text{r}} = -0.5$

How about physical observables from these potentials?

Result : Phase sift $\delta(k)$

Result : wave function

Binding energies change by localization, so the wave function also change

 0.20

Results corresponds to scattering length

6

Ibuki. Terashima (Tokyo Metropolitan University) "NSTAR2024" @York, On Jun. 17th

scattering length [fm]

Summary

✓ Formulate with explicit hadron d.o.f $V_{\text{eff}}^{\bar{D}^*D}(\boldsymbol{r}, \boldsymbol{r'}, E) = \left[\omega^q(E) + \omega^h(E)\right] V(\boldsymbol{r}) V(\boldsymbol{r'})$

✓ Phase shift $\delta(k)$ depends on E_0 when E_0 is small enough

> Phase shift $\delta(k)$ depends on V^h when E_0 is small enough

Convert non-local E-dependent potential to local by
 (I) Formal derivative expansion, (II) HAL QCD method

 $\checkmark V^{\text{formal}}$ and V^{HAL} are quantitatively different

 $\succ V^{\text{HAL}}$ reproduces the exact $\delta(k)$ better than V^{formal}