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Outline

»Qutline:

O Al/ML advancements, direction, possibilities

O How CLAS12 leverages Al/ML tools
O What is the impact on physics from Al/ML

O What is the impact on computation infrastructure

O Looking into the future (streaming readout, other Jlab
Experiments, EIC)




What is Al? 3

ARTIFICIAL
INTELLIGENCE

Early artificial intelligence
stirs excitement. MACHINE

DEEP
LEARNING

XA XA
AAMM

1950°s 1960’s 1970’s 1980’s 1990°s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.




History of Al

2011. Apple’s SIRI and IBM’s Watson

1961.First Industrial robot replaced 1997. IBM’s Deep Blue defeated Garry were developed

humans at assembly line. Kasparov in chess Competition 2014 .EUGENE, a chatbot passed Turing @ C h atG PT
1964.Pioneering chatbot named 1998. An emotionally intelligent robot test; Amazon launched Alexa, a voice

ELIZA was developed at MIT KISMAT was developed enabled intelligent virtual assistant.
1966. A general purpose mobile 1999. Sony launched pet robot dog 2017.Google’s AlphaGO beat the world’s

robot developed at Stanford named AIBO best GO player Ke Jie.

1961-1970 1991-2000 2011-2020

1950-1960 1971-1990 2001-2010

1950. Turing Test by Alan Turing Al Winter 2002. iRobot launched autonomous
1956. Term of Al was coined vacuum cleaner robot in bulk.
2009.Google built first self driving
car for urban conditions

2020

Moxie: A Social-Emotional
Companion for kids is developed
by Embodied.

Earth’s first autonomous beehive
is developed by beewise
Triallectory is an Al enabled
service to look for clinical trials.
BrainBox Al is an Al system to
predict a building’s thermal
conditions.

Refined business process, more
personalized recommendations,
human like conversational skills




Al In Nuclear Physics

My First experience with Event
Reconstruction

Rate: ~0.0008 Hz (single person,
assuming 20 min per event)

Earth Population: 4.767 billion (2,135 kHz
assuming 56% in the age bracket 21-65)

1996-2001

CLAS6 event reconstruction

Rate: 8 Hz (single CPU)
Computers 4 Cores, 2.4 MHz

CLAS12 event reconstruction

Rate: 2-3 Hz (single CPU) (many more
channels, higher rates)

Computers now (64 Cores), 2.6 MHz
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Jefferson Lab/CLAS12

add experimental hall (12 GeV)‘ P C E B AF
and beamline o . .
> 12 GeV electron beam distributed to 4

upgrade

s RS a0 poe experimental hall
add 5 cryomodules '.‘_._""_-_,::--_; —— \J ) .
B ] > Each experimental hall contains a

liquifier (7=

detector system for specific experiments
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add 5 cryomodules ? H a I I - B :

aad arc
B enbes bl > CEBAF Large Acceptance Spectrometer
B, (CLAS12) Located in Hall-B
> Central Detector:
> Silicon Tracker

A e » Time-Of-Flight
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> Neutron Detector
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Drift Chambers

~Keyboard Actions

E @ Rotate +/- (original) x

[E Move left/right

:o:a:e +:: :origfna::y

3] K] et Parameter Specification

E @ Make [x,y] out

3] 4] Makez s o Angular Range 5-40 degrees
Volumes T | T . -----------------------------------------------------------------------------------------------------
Dot G secors Momentum Resolution dp/p<1%
Sector 3 SBCHOr 4 [ TTTTTTTTTTTTTTTmmmmmmmmomoommooooooooooooooooooooooo oSS oooooooooooooooooooooooooooooooooooooooooe-
Ao B Polar resolution 1 mead
I Azimuthal Resolution 1 mrad/sinT

T e T Luminosity 10e35 cme-2se-2
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Parameter

Specification
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Track Finding

» 6 sectors with 6 chambers in each sector (called super-layers)

. . . . . O SR oo
» 6 wire planes in each super layer with 6-degree tilt relative to Q%Q%Q% 8@8@8@ 98@8@8
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» Find segments in each super layer (remove noise)

» Combine 6 segments (one from each super layer) to make a list
of possible tracks

> |dentify correct combinations of segments that represent a track

» The conventional algorithm performs fit through the magnetic
field to assess the goodness of the track.

» Requires:

» Knowledge of drift chamber geometry

> The precise value of the magnetic field in space




Track Finding
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> Neural Network is trained to recognize patterns of segment combinations

» The track classitier assigns a probability of the track candidate to be positive,
negative, or false track.

» The network is trained on reconstructed data where the right combinations

are already found and false combinations of segments is generated by
interchanging clusters from a different track

Input Layers

sssss%

)
(O]

Output Layer

0 - no track
+ track
- track

> Input: W [1..6] - average wire position of the segment
» Output: [false track, positive track, negative track]

Negative

Predicted Class

Positive

Positive Negative
True Class




Corruption Auto-Encoder

> An auto-encoder is composed of an encoder and a decoder sub-models.
The encoder compresses the input and the decoder attempts to recreate
the input from the compressed version provided by the encoder.

> Typically used for de-noising, but can be used for fixing glitches (our
case).

Input Output

7
A |

Encoder Decoder

> The network Predicts the missing cluster
position with a precision of 0.36 Wire

Inference of missing Segment: u= —0.058, 0 =0.356
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Training Sample for Auto-Encoder

Encoder

Decoder

e

Use Auto-Encoders to fix the missing cluster (provide a position)

Good reconstructed tracks are used to generate training
samples by removing one cluster from each super layer




Putting all together
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Reconstruction Workflow

{ RAW DATA }

» The reconstruction workflow implements Al/ML track-finding tools
that work in parallel with the conventional algorithm.

> Al-assisted tracking uses MLP to identity track candidates from the
segments found by conventional segment-finding algorithms.

» The same track fitter (using Kalman-Filter) is used by both
workflows.

» Two different outputs are produced from the identitied particles
from each tracking workflow.

» Physics analyses are performed to assess the efficiency and analyze
different event topologies.




Physics Results

/! -+ /! _+ —
| R | ep — e (X) ep —enm m (X)
> Single particle efficiency increases by ~10% in standard
running conditions.
» The impact on physics for a multi-particle final state is 7 with AI [ with AI
dramatic (20% for the two-particle final state and ~35% forthe 19} B conventional 10- [ conventional
three-particle final state)
» The tracking code speedup is ~30%. 0.8+ 0.8}
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Denolsing

» Convolutional Auto-Encoder is used to de-noise raw data from drift chambers.

» The network is trained on reconstructed data with track hits isolated from raw
DC hits.

> The network is able to isolate hits that potentially belong to a valid track
through drift chambers
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Reconstruction Workflow

| RAW DATA } > The reconstruction workflow implements Al/ML track-finding tools that work in parallel with
. ) the conventional algorithm.
Al/ML > First, the data (TDC values from Drift Chambers) is passed through de-noiser
. RELLBISER » Then the conventional algorithm finds segments.
' > Al-assisted tracking uses MLP to identify track candidates from the segments found by
SIEICIE\I'\[QE:T conventional segment-finding algorithms.
| I > The same track fitter (using Kalman-Filter) is used by both workflows.
l g » Two different outputs are produced from the identified particles from each tracking workflow.
Al/ML CONVENTIONAL » Physics analyses are performed to assess the efficiency and analyze different event topologies.
CORRUPTION TRACK
AUTO-ENCODER FINDER
Al/ML L oot . o .
TRACK | » Single track efficiency with beam current
FINDER .. : :
............................ l 50-95 B De_no|s|ng |mproveg the S|ope Wlth
; ’ : S 0.90 conventional tracking.
TRACK TRACK 'S . . . .
FITTER FITTER H .85 » The combination of denoised/ai-
. S l ................................................................. I ........................... : U%O N assisted yields the best track efficiency,
;& ' ~18% higher than conventional.
0.75 -®- conventional (slope=-0.00443) . . : 5
{ PARTICLES PARTICLES | ai-assised (slope=-0.00328) > What is the physics impact”
0.70r @ denoised/conventional (slope=-0.00294)
l l -A- denoised/ai-assisted (slope=-0.00217)

PHYSICS ANALYSIS
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De-Noising/Al-Assisted Tracking

Three detected particles in the event

Al-Assisted Tracking
Increased statistics by ~35%

De-Noised/Al-Assisted

Compared to Conventional 300+ AL Acsistod
] -Assiste
De-Noised/Al-Assisted Tracking | i B Conventional
Increased statistics by ~56% 250f
Compared to conventional ' 1
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Al-Assisted Tracking
Increased statistics by ~35%

De-Noising/Al-Assisted Tracking

Three detected particles in the event

Compared to Conventional

De-Noised/Al-Assisted Tracking
Increased statistics by ~56%
Compared to conventional

Relative Gain 2.34

300

250

200

4-particle final state with
De-Noised/Al-Assisted
Increased statistics by ~134%

Compared to conventional

. H(e)—em'np

entries
mean
rms

0.8120
0.3151

-1.587%+16.6204
133.346%47.6282
-103.268+30.3096
48.539+4.9856
0.765%0.0055
0.054%0.0064
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Regression Network

Input Layers Output Layer

» Each track has unique segment combinations that
correspond to particle momentum and direction.

Wd
W, Momentum
xﬁ Polar Angle
W, Azimuthal Angle
6 A\ > Wes
=51 A >/
?5\ ] /
ol ‘ » p=0.7 GeV, 6=12°, p=60°
i N . . . .
%3 | /> 4 p=5.0 GeV, 0=12°, 4=60° The netvyc?rk is trained on 6 input parameters, corresponding to to average
S ol Y A 5 5 wire position of segments in each super-layer.
| 4 + p=6.3 GeV, 6=12°, =60 | | |
1 v, » The output is the momentum of the particle and azimuthal and polar angles.
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Physics Analysis

ep — e'mm (p) ep — e'pK (K™ ep — et (p)
- 5 [ 1200 .
i 2501 '
4000 | 1000} p°(770)
2001 [
3000 : 3001
' 1501 i
2000 ' 600-
_ 1007 400
1000_‘ 501 2001
0.5 1.0 1.5 2.0 2.5 3.0 1.5 16 1.7 1.8 19 20 2.1 0.5 1.0 1.5 2.0
M* (e ') [GeV] M (pK°) [GeV] M (11r) [GeV]
> Physics event reconstruction is based only on TDC hits in > Does not provide Particle ID (feature is coming soon)
Drift Chambers. » The highest energy negative particle is assumed to be an electron
» No calibration databases are used » Positive particles are assigned pion ID, for other analysis the mass of the desired
. . . . positive particle is used (proton for example)
» No Timing information from Time-Of-Flight Counters

» Or kaon mass for the second negative particle (lowest momentum) for lambda
analysis




InstaRec performance

Data Processing
/68 cores used
10 hours to reconstruct particles

Data Collected at rate:
12,000 interactions per second
100 M events in ~4 hours

Experiments are conducted for 1-2 month
Processing data from one experiment takes ~3 month

The track reconstruction running on a laptop
Reconstructs physics final states and sorts them

MacBook Pro M3
8 cores

? Hours

Data Trains

Sort data by interactions
Each output is a specific physics channel
2 hours for sorting
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InstaRec performance

Data Processing
/68 cores used
10 hours to reconstruct particles

Data Collected at rate:
12,000 interactions per second
100 M events in ~4 hours

Experiments are conducted for 1-2 month
Processing data from one experiment takes ~3 month

The track reconstruction running on a laptop
Reconstructs physics final states and sorts them

MacBook Pro M3
8 cores

25 Minutes

Data Trains

Sort data by interactions
Each output is a specific physics channel
2 hours for sorting
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Every event has to be reconstructed and then separated by
event topology for each analysis group in the collaboration

Events recorded in chronological sequence

DAQ rate 12,000 Hz
Rate: 96,000 Hz on a Laptop

-
J
Reconstructed events don't have to be post-processed for each analysis group.

Data monitoring and calibration become possible in real-time.

Events in the output are sorted by topology

Trigger impurities are removed, significant speed-up of data processing
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Conclusions

[] De-Noised/Al-Assisted

: : . The work presented 300 O ALAssisted
> Al-Assisted Tracking/De-Noising here is done ol = Conventions
In Java

> Already implemented in the standard CLAS12 worktlow

» Increase in single particle efficiency !
1001

200

> Improvement in luminosity dependence of tracking efficiency

50

> Yields to increased physics statistics

. . . 04 0.6 08 1.0 1.2 14 1.6 1.8 2.0
> Al-based fast reconstruction is being developed (InstaRec): Mx (€70'7T) [GeV]

> Will be integrated with the online reconstruction for data quality monitoring

1.00

L
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> Level-3 trigger will use this to tag events for reconstruction algorithms

S

Ne)

S
—

> Particle Identification is being developed

SR

o

S
-

Track Efficiency
e
co

> Future: |
0.75F -® conventional (slope=-0.00443)
» Experience in CLAS12 can be applied to upcoming experiments at Jlab 070 demotsed/conventiona (slope=-0.00294)
- -A- denoised/ai-assisted (slope=-0.00217)
> This is the future of streaming readout, where event identification has to be done in real-time I 't[{i] N
50 A°(1520)
We are not in Al prototyping stage, we are in the age of Al 2000
150
And we will be glad to share our experience with other o
] 50_
Halls and Experiments |

1.5 16 1.7 1.8 19 2.0 2.1
M (pK") [GeV]




NSTAR (York, 2024)
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What is Deep Learning? 25

Forward Propagation Solving problems that do not have an analytical solution

h lterative process until
C loss function is

minimized
4 Predictions (y') True Values (y)

>

Backward Propagation




Image Generation DALL-E 26

Here are the images depicting four people playing ice hockey

Here are the images showing a footballer, a

goalkeeper, and a defender playing football on Mars. on the moon, each wearing Nike brand skates. Earth and

Saturn are visible in the background.

EEPE

.
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U.S. DEPARTMENT OF

ENERGY ‘ Jefferson Lab ‘ A NSTAR (York, 2024

.Gavalian (Jlab




InstaRec performance

2.135 kHz event reconstruction for the Running InstaRec on Laptop

whole world. 12 threads

Earth's population almost doublead
since then so ~4,000 kHz

~4000 kHz/96 kHz = 42 Laptops /
Coincidence? Reconstruction Rate 8 kHz (M3)
Or the answer to everything. per core (96 kHz multithreaded)

"




Benchmark

» M1 ARM processors are more performant
compared to x86 counterparts

» Simple matrix multiplication code (C++)
tested single-treaded NxN matrix
multiplications

> M1 outpertorms AMD (IFARM1901) by a
significant margin.
» Maybe moving to ARM machines in the

future will provide better performance for
Al applications?
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