Hadron Spectroscopy at the EIC

Justin Stevens

Electron Ion Collider (EIC)

- Versatile high-luminosity, polarized e+p and e+A collider, recently launched DOE project
 - * Nucleon spin and 3D structure
 - * High gluon density and saturation

- $\sqrt{s} = 29 140 \ GeV$ $\mathcal{L}_{ep} = 10^{33} - 10^{34} \ cm^{-2}s^{-1}$
- * Today: what can we learn about the spectrum of hadrons with the EIC?

Reminder of *XYZP*_c states

XYZP_c reminder: *X*(3872) or $\chi_{c1}(3872)$

$\chi_{c1}(3872)$ compared to $\psi(2S)$

* LHCb results on "prompt" $\chi_{c1}(3872)$ production demonstrate robust signal, not just from B-decays

$\chi_{c1}(3872)$ compared to $\psi(2S)$

Recent LHCb results in pp Candidates/(1 MeV/c²) 10000 LHCb $pp \sqrt{s} = 8 \text{ TeV}, p_T > 5 \text{ GeV}/c$ show prompt $\chi_{c1}(3872)$ 9000 Candidates/(1 MeV/ c^2) decreases with multiplicity 8000 7000 6000 5000 $\frac{\sigma_{\chi_{cl}(3872)}}{\sigma_{\psi(2S)}} \frac{\mathrm{BR}(\chi_{cl}(3872) \rightarrow J/\psi\pi^{+}\pi^{-})}{\mathrm{BR}(\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-})}$ $M_{J/\psi \pi^+\pi^-}$ [MeV/c²] 4000 $\psi(2S)$ 3000 $\chi_{c1}(3872)$ 2000 1000 3700 3900 3800 LHCb 0.14 $BR(\chi_{cl}(3872) \rightarrow J/\psi \pi^+\pi^-)$ $M_{J/\psi\pi^{+}\pi^{-}}$ [MeV/c²] LHCb: PRL 126 (2021) 9, 092001 +b decays $BR(\psi(2S) \rightarrow J/\psi\pi^+\pi^-)$ + Prompt $pp \ \sqrt{s} = 8 \text{ TeV}$ 0.12 $p_{\rm T} > 5 \, {\rm GeV}/c$ Comover Interaction Model, Esposito et al. 0.1 Compact Molecule Molecule **Molecule** Compact ∞ (coalescence) tetraquark (geometric) 0.08 **Tetraquark** 0.06 0.04 $\sigma_{\chi_{_{cl}}^{(3872)}}$] $\sigma_{\psi(2\mathrm{S})}$ 0.02 0 50 100 150 200 0 N^{VELO} tracks Multiplicity \rightarrow

$\chi_{c1}(3872)$ in heavy ion collisions

- * Recent LHCb results in pp show prompt $\chi_{c1}(3872)$ decreases with multiplicity
- * First observation of prompt $\chi_{c1}(3872)$ in PbPb at CMS not suppressed relative to $\psi(2S)$

$$\frac{\sigma_{\chi_{cl}(3872)}}{\sigma_{\psi(2S)}} \frac{\mathrm{BR}(\chi_{cl}(3872) \rightarrow J/\psi \pi^{+}\pi^{-})}{\mathrm{BR}(\psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-})}$$

CMS: PRL 128 (2022) 3, 032001

$\chi_{c1}(3872)$ in heavy ion collisions

- * Recent LHCb results in pp show prompt $\chi_{c1}(3872)$ decreases with multiplicity
- * First observation of prompt $\chi_{c1}(3872)$ in PbPb at CMS not suppressed relative to $\psi(2S)$
- * Enhancement in pPb relative to pp, increase with system size

Electroproduction of X(3872) in eA

- Dependence on breakup of X(3872) in nuclei?
- Little suppression expected for compact tetraquark configuration
- Expect suppression of molecular (large size) configuration

sensitive to photo couplings

Charged tetraquark candidates: Z_c

Charged tetraquark candidates: Z_c

Justin Stevens, WILLIAM & MARY 16

Photoproduction of $Z_c^+(3900)$

- Alternative production mechanism: free of rescattering effects and sensitive to photo couplings
- Same production mechanism near threshold (π exchange) studied with light quarks in GlueX and CLAS12

J^{PAC}: PRD 102, 114010 (2020)

Photoproduction of $Z_c^+(3900)$

- Alternative production mechanism: free of rescattering effects and sensitive to photo couplings
- Same production mechanism near threshold (π exchange) studied with light quarks in GlueX and CLAS12

J^{PAC} PRD 102, 114010 (2020) PRD 106, 094009 (2022)

Asymmetric central detector concepts due to asymmetric beam energies: "complete" coverage for $|\eta| < 3.5$

exclusive final state, will uniquely test production mechanism

Photoproduction of $Z_c^+(3900)$ EIC: $\gamma p \rightarrow n J/\psi \pi^+$ **EIC** broad energy coverage Events / 50 WeV 1200 1000 800 600 **EIC Simulation** • $Z_c(3900)^+ \rightarrow J/\psi \pi^+$ 10^{2} **TPAC** PYTHIA Bkgd. $Z_{c}(3900)^{+}$ 10 $Z_{b}(10610)^{4}$ 600 $(\operatorname{an} Z n)$ [up] $-Z_{h}'(10650)^{+}$ 400 200 1 $\sigma(\gamma p$ 0 3.6 3.8 4.2 4.4 4 $M_{J/\psi\pi^{*}} \text{ (GeV)}$ 10^{-1} JLab 22 GeV: $\gamma p \rightarrow n J/\psi \pi^+$ 2000 E(e⁻) = 22 GeV 10 15 1800 5 20 ZC 1600 $\sqrt{s_{\gamma p}}$ [GeV] 1400 1200 Jefferson Lab 22 GeV 1000 800 600 High luminosity near-threshold 400 **Signal Simulation** 200 0 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

Mass $(J/\Psi \pi +)$ (GeV²)

Photoproduction of *XYZ* states

Complementary access to charmonium photoproduction with higher energy facilities

Electron Ion Collider (EIC)

Justin Stevens, WILLIAM & MARY 24

EIC Project Schedule

* EIC project passed CD-3A review

International **ePi** collaboration developing detector

<u>Rolf Ent's slides</u> with "best guess" schedule from JLab User Organization meeting last week

Summary

- * Considerable evidence for many exotic hadron candidates
 - Extra (supernumerary) states: X and Y
 - ✓ Charged states with hidden heavy quarks: Z and P_c
- * Theoretical developments to understand these observations:
 - * Less exotic: hadronic molecules, final-state rescattering, etc.
 - More exotic: tightly bound multi-quark states, gluonic field excitations, etc.
- * EIC: alternative production mechanism to probe exotic hadrons,
- * Continued theory/experiment collaboration and high statistics experiments promise to provide an exciting (exotic) future

JRS supported by DE-SC0023978

Office of

Science

Backup

Realizing the EIC and JLab 22 GeV

* EIC project passed CD-3A review

Patrizia Rossi Plenary Tue @ 11:30

- International **epitie** collaboration developing detector
- Jefferson Lab 12 GeV and positron program through 2030s
 - Broad 22 GeV program defined in White Paper [arXiv:2306.09360]

David Dean's slides with "Notional" plan from JLab User Organization meeting last week

Activities	Fiscal Year																		
	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Moller (MIE, 413.3B, CD-2/3)																			
SoLID (LRP, Rec 4)																			
Positron Source (R&D)																			
CEBAF Upgrade preCDR/preplan																			
Positron Project (potential)																			
Transport e+																			
22 GeV Development (R&D)																			
22 GeV Project (potential)																			
EIC Project (V4.2, CD-1, CD-3A)																			
CEBAF Up																			

NSTAR: EIC

*

Justin Stevens, WILLIAM & MARY 28