

Observation of multiple structures in the $J/\psi J/\psi$ mass spectrum at CMS

Zhen Hu on behalf of the CMS Collaboration

ATLAS

The Large Hadron Collider (LHC) at CERN is the world's largest particle collider. It lies in a tunnel 27 kilometres in circumference and as deep as 175 metres beneath the France–Switzerland border near Geneva.

LHC 27 km

CERN Prévess

NSTAR2024

Jun 20, 2024

ALICE

the Compact Solenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

•

____η coverage (track & muon): [-2.5,2.5]

HCAL

ECAL

Hadron

Bectromagneti

Lead tungstate E/M Calorimeter (ECAL) Floctron

Charged Hadron (e.g. Pion)

Neutral Hadron (e.g. Neutron)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

CMS dimuon & trigger

Excellent detector for quarkonium

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

- μ p_T, (μμ) p_T, (μμ) mass, (μμ) vertex, and additional μ Zhen Hu NSTAR2024 Jun 20, 2024

CMS publications on exotic hadrons

• X(3872) studies

- Measurement of X(3872) to $J/\psi \pi^+ \pi^-$
- Observation of $B_s^0 \rightarrow X(3872)\phi$
- Evidence of X(3872) in PbPb collisions

<u>JHEP 04 (2013) 154</u>

PRL 125 (2020) 152001

PRL 128 (2022) 032001

First LHC experiment re-discovered X(3872)

First experiment to observe X(3872) in B_{S}^{0} decay

First experiment to see X(3872) signal in PbPb

 $X(3872) \rightarrow J/\psi \ \pi^+ \ \pi^- \rightarrow \mu^+ \ \mu^- \ \pi^+ \ \pi^-$

4.2 *σ*

Phys. Rev. Lett. 128 (2022) 032001

6

CMS publications on exotic hadrons

• X(3872) studies

- Measurement of X(3872) to $J/\psi \pi^+ \pi^-$
- Observation of $B_s^0 \rightarrow X(3872)\phi$
- Evidence of X(3872) in PbPb collisions

<u>JHEP 04 (2013) 154</u> <u>PRL 125 (2020) 152001</u> <u>PRL 128 (2022) 032001</u>

- Searches without showing significance structures
 - Upper limit for $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$
 - Observation of $B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$
 - Observation of $\,\Lambda_b^0 o {
 m J}/\psi\,\Xi^-{
 m K}^+$

PRL 120 (2018) 202005

EPJC 82 (2022) 499

arXiv:2401.16303 (2024)

• X(3872) studies

- Measurement of X(3872) to $J/\psi \pi^+ \pi^-$
- Observation of $B_s^0 \rightarrow X(3872)\phi$
- Evidence of X(3872) in PbPb collisions

<u>JHEP 04 (2013) 154</u> <u>PRL 125 (2020) 152001</u> <u>PRL 128 (2022) 032001</u>

- Searches without showing significance structures
 - Upper limit for $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$
 - Observation of $B^0 \rightarrow \psi(2S) K_S^0 \pi^+ \pi^-$
 - Observation of $\,\Lambda_b^0 o {
 m J}/\psi\,\Xi^-{
 m K}^+$

<u>PRL 120 (2018) 202005</u> <u>EPJC 82 (2022) 499</u>

arXiv:2401.16303 (2024)

- Observations of new structures
 - Observation of X(4140) from $J/\psi\phi$
 - Observation of X(6600) in ${
 m J}/\psi~{
 m J}/\psi$

PLB 734 (2014) 261-281 PRL 132 (2024) 111901

NSTAR2024

• First LHC experiment to see new exotic hadrons (Y(4140))

https://www.nikhef.nl/~pkoppenb/particles.html

Phys. Lett. B 734 (2014) 261-281

The fitted mass and width

M = 4148.0 +/- 2.4 (stat.) +/- 6.3 (syst.) MeV

Γ = 28⁺¹⁵₋₁₁(stat.) +/- 19 (syst.) MeV

Evidence for an additional peaking structure at higher mass also reported

NSTAR2024

New domain of exotics: all-heavy tetra-quarks

• First mention of 4c states at 6.2 GeV (1975)

– Just one year after the discovery of J/ψ

We expect at least three exotic mesons with hidden charm, $c\bar{c}(p\bar{p}-n\bar{n})$ [between 3.7~4.1 GeV], $c\bar{c}\lambda\bar{\lambda}$ [~4.1 GeV] and $c\bar{c}c\bar{c}$ [~6.2 GeV] to which we refer

Research Institute for Fundamental Physics Kyoto University, Kyoto

(Received January 20, 1975)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

 S	JPC	Mass (GeV)					
 0	$1^{}$ 0 ⁻⁺ 1 ⁻⁺ 2 ⁻⁺	6.55	$\longleftarrow (cc)_{\underline{3}} * - (\overline{cc})_{\underline{3}}$		····		
$\frac{1}{2}$	$1^{}, 2^{}, 3^{}$			L	S	J^{PC}	Mass (GeV)
0	2++	6.78				, <u> </u>	
1	$1^{+-}, 2^{+-}, 3^{+-}$			1	0	1	6.82
2	0,1,2,5,4		(aa) (aa) (ab)	2	0	2^{++}	715
0 1	3 2 ⁻⁺ , 3 ⁻⁺ , 4 ⁻⁺	6.98	$(cc)_{\underline{6}} - (cc)_{\underline{6}} * \longrightarrow$	3	ů 0	3	7.41
2	1, 2, 3, 4, 5						

• A different exotic system compared to exotics with light quarks

NSTAR2024

J/ψJ/ψ events—first evidence (1982)

PLB114 (1982) 457

PLB158 (1985) 85

NSTAR2024

Possible explanations of $J/\psi J/\psi$ states

2⁺⁺ four-quark states, PRD29 (1984) 426

TABLE I. Parameters used in Eq. (8) to calculate the cross sections for vector-meson pair production. (+) and (-) denote two degenerate $2^{++} Q^2 \overline{Q}^2$ states. Except in the case of JJ, we take $4\pi/f_I^2 = 0.03$, due to the fact that the $2^{++} Q^2 \overline{Q}^2$ are expected to lie not far above the threshold. α_s is determined from Eq. (11).

·····	er landeste tribene recherchertere aus		Mj		
V_1V_2	$a_{V_1V_2}^i/a$	$b_{\alpha\beta}^{j} / \alpha_{s} \frac{a}{\sqrt{8}} \delta_{\alpha\beta}$	(GeV)	α_s	m_1
JJ	1/√3	$\left[\frac{2}{3}\right]^{1/2}\frac{4\pi}{f_{\perp}^2}$	7.0	0.18	3.10
$J\omega^{(+)}$	$1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_L f_{\omega}}$	4.05	0.2	
$J\omega^{(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2} \frac{4\pi}{f_{\perp}f_{\omega}}$	4.05	0.2	
$\Upsilon J^{(+)}$	1/√6	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\rm X}f_{\rm I}}$	13.5	0.167	-
ΥJ ⁽⁻⁾	1/√12	$\left(\frac{2}{3}\right)^{1/2} \frac{4\pi}{f_{\mathfrak{X}} f_{\mathfrak{Z}}}$	13.5	0.167	
$B_c^* \overline{B}_c^{*(+)}$	$-1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\mathfrak{X}}f_{\mathfrak{Z}}}$	13.5	0.167	6.60
$B_c^* \overline{B}_c^{*(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2}\frac{4\pi}{f_{\rm X}f_{\rm Z}}$	13.5	0.167	

There were other attempts

- Many recent theoretical studies on $(c\overline{c}c\overline{c})$, $(b\overline{b}b\overline{b})$, $(b\overline{b}c\overline{c})$:
 - controversial on existence of bound states below $\eta_b \eta_b$ (or $\eta_c \eta_c$) threshold;
 - consistent on existence of resonant states above $\eta_b \eta_b$ (or $\eta_c \eta_c$) threshold.

- Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - Generator: Pythia8, JHUGen

- Main background:
 - Nonresonant single-parton scattering (NRSPS)

Generator: Pythia8, HelacOnia (next-to-next-to-leading order), Cascade (next-to-leading order)

- Nonresonant double-parton scattering (DPS)
 - Generator: Pythia8

かのRMAL UNU

NSTAR2024

CMS J/ ψ J/ ψ cross section at 7 TeV

Total cross section, assuming unpolarized prompt J/ ψ J/ ψ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

(Different assumptions about the J/ ψ J/ ψ polarization imply modifications to the cross section ranging from -31% to +27%)

NSTAR2024

CMS J/ ψ J/ ψ candidates at 13 TeV

🖉 Zhen Hu

NSTAR2024

- Most significant structure is a BW at threshold, BW0--what is its meaning?
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...

135 fb⁻¹ (13 TeV)

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions •
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- SPS+DPS+BW0 as our background

CMS J/ ψ J/ ψ model: 3 BWs + Background

Zhen Hu

 σ (stat.)

 σ (stat. + syst.)

NSTAR2024

6.5

5.7

Observation

Jun 20, 2024

9.4

9.4

Confirmation of

X(6900) from LHCb

4.1

4.1

Evidence

The dips

- > Possibility #1:
- Interference among structures?
- > Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in PAS

Zhen Hu

NSTAR2024

Jun 20, 2024

- More secrets to dig out
- We explored possibility #1 in detail

20

CMS J/ ψ J/ ψ interference fit

Editors' Suggestion

New Structures in the $J/\psi J/\psi$ Mass Spectrum in Proton-Proton Collisions at $\sqrt{s}=13~{
m TeV}$

A. Hayrapetyan *et al.* (CMS Collaboration) Phys. Rev. Lett. **132**, 111901 (2024) – Published 15 March 2024

Three structures, X(6900) and two new ones around 6.64 and 7.13 GeV, are seen in the $J/\psi J/\psi$ mass spectrum that are consistent with being part of a family of radial excitations. Show Abstract +

- 135 fb⁻¹ (13 TeV) MeV 1.9σ CMS 9,8σ 160 Candidates / 25 ♦ Data — Fit 140 $-BW_1 - BW_2$ 120 ---- BW₃ --- Background - - Interfering BWs 100 80 60 40 20 Data-Fit Stat. unc. 7.5 6.5 8 8.5 $m_{\mathrm{J/\psi}\,\mathrm{J/\psi}}\,[\mathrm{GeV}]$
- Fit with interf. among BW1, BW2, and BW3 describes data well
- Measured mass and width in the interference fit

		X(6600)	X(6900)	X(7100)
Interference	<i>m</i> [MeV]	$6638\substack{+43+16\\-38-31}$	6847^{+44+48}_{-28-20}	$7134\substack{+48+41\\-25-15}$
	Γ [MeV]	$440\substack{+230+110\\-200-240}$	$191\substack{+66+25\\-49-17}$	97^{+40+29}_{-29-26}
	F	irst observatic	on	First evidence
Zhen Hu	NSTAR2024	Jun 20, 2	024	21

ATLAS-CMS-LHCb data comparison

Disclaimer: comparison plots in this page are not made by ATLAS/CMS/LHCb (taken from https://indico.cern.ch/event/1158681/contributions/5162594/)

- Comparing with LHCb, CMS has:
 - 135/(3+6) ≈ 15X int. lum.
 - $(5/3)^4 \approx 8X$ muon acceptance
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

- Comparing with CMS, ATLAS has:
 - 1/3 –1/2 of CMS data (trigger?)
 - dR cut—remove high mass events

NSTAR2024

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

 117 ± 24

15	京师范大
	1902
IANJ	司品言
12	VORMAL UN

Model I

 6550 ± 10

 112 ± 27

CMS

 6927 ± 10

CERN

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

Jun 20, 2024

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)		m(6900)	Г(6900)	-
LHCb [15]	Model I	unrep.	unrep.	Γ	$6905 \pm 11 \pm 7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27		6927 ± 10	117 ± 24	

- LHCb did not give parameters for BW1
 - CMS has a shoulder before BW1

NSTAR2024

• helps make BW1 distinct

• Does not describe 2 dips well

25

CMS and LHCb Fit Comparison - 2

Fit CMS data with LHCb model II : "X(6700)" interferes with NRSPS + X(6900) + Bkg

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886\pm11\pm11$	$168\pm33\pm69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

CÉRN

NSTAR2024

CMS and LHCb Fit Comparison - 2

• CMS obtained larger amplitude and wider width for X(6700)

CÉRN

CMS and LHCb Fit Comparison - 2

• Does not describe X(7100) region

CÉRN

NSTAR2024

ATLAS result – observed X(6900)

- ATLAS model A: analogous to LHCb model I, but 2 auxiliary BWs interfere with X(6900)
- ATLAS Model B: analogous to LHCb model II, one auxiliary BW interferes with NRSPS
- Both models describe the data well
 - the broad structure at the lower mass could result from other physical effects, such as the feed-down
- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance > 5σ

Phys. Rev. Lett. 131 (2023) 151902

Zhen Hu

NSTAR2024

Jun 20, 2024

29

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant $\alpha_s = 0.35 \pm 0.05$.

Nucl. Phys. B 966 (2021) 115393

$T_{4Q}(nS)$ states	\mathcal{J}^{P}	Mass(n=1)	Mass(n=2)	Mass(n=3)	$\max(n=4)$
$T_{ccar{c}ar{c}}$	0++	$6055\substack{+69\\-74}$	$6555\substack{+36\\-37}$	6883^{+27}_{-27}	7154^{+22}_{-22}
	2++	$6090\substack{+62\-66}$	0500 + 34 - 35	<u>coco+27</u>	7100_{-22}^{+21}
$T_{ccar{c}ar{c}}'$	0++	5984_{-67}^{+64}	6468	6775^{+26}_{-26}	66^{+21}_{-22}
$T_{bcar{b}ar{c}}$	0++	$12387\substack{+109\\-120}$	12911^{+18}_{-1}	13200^{+35}_{-36}	$13429\substack{+29\\-30}$
	2++	$12401\substack{+117 \\ -106}$	$12914\substack{+49\\-49}$	13202^{+35}_{-36}	13430^{+29}_{-29}
$T_{bcar{b}ar{c}}'$	0++	$12300\substack{+106\\-117}$	$12816\substack{+48 \\ -50}$	1304^{+35}_{-35}	$13333\substack{+29\\-29}$
$T_{bbar{b}ar{b}}$	0++	18475^{+151}_{-169}	$19073\substack{+59 \\ -63}$	$19,53\substack{+42\\-42}$	$19566\substack{+33\\-35}$
	2++	$18483\substack{+149\\-168}$	$19075\substack{+59 \\ -62}$	$19\ 55^{+41}_{-43}$	19567^{+33}_{-35}
$T_{bbar{b}ar{b}}'$	0++	$18383\substack{+149\\-167}$	$18976\substack{+59\\-62}$	$19.56\substack{+43 \\ -42}$	$19468\substack{+34\\-34}$
		S-wave	M[BW1]] = 6638 ± 10 MeV 2] = 6847 ± 9	$) \pm 12$ $) \pm 5$
				MeV	
			M[BW3	8] = 7134 ± 1 MeV	9 ± 5

Radial excited p-wave states (like J/ψ series)? Or Radial excited S-wave states?

- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify
- Natural question: what about YY, JY final state?

	<u>Data-Fit</u> Stat. unc.				7.5		a — Fit BW2 BW2 BW2 BW2 BW2 BW2 BW2 BW2	¹³⁵ ^(h) ⁽¹³⁾ CMS ² kground Prf. ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	S₀ Latin Innintration Inninnin Data-Fit Candidates / 25 MeV	Stat. unc. 180 100 100 100 100 100 100 100	6.5	Data — Fit — BW ₂ — BW ₂ — BW ₃ — Background — Interfering BWs — Unterfering BWs — BW ₂ — BW ₂ — BW ₃ — Background — Interfering BWs — Market and A
	$1^{1}P_{1}$	1	363.9	320.3	-366.7	337.5	-14.4	0	0	-2.6	6553	3
ſ	$1^{2}P_{0}$	U İ	300.7	320.2	-300.7	337.5	-1.2	-50.9	-43.1	-2.0	6460	$\eta_c(1S)\chi_{c0}(1P)$
	$1^{3}P_{1}$	1^{-+}	356.6	320.3	-366.7	337.5	-7.2	-28.4	21.5	-2.7	6554	4 6494.1 $\eta_c(1S)\chi_{c1}(1P)$
l	$1^{3}P_{2}$	2^{-+}	356.6	320.2	-366.7	337.5	-7.2	28.4	-2.1	-2.4	6587	7 6539.6 $\eta_c(1S)\chi_{c2}(1P)$
	$1^5 P_1$	$1^{}$	342.4	320.4	-366.7	337.5	7.2	-85.3	-30.2	-2.7	6439	$\theta = 6508.8 \eta_c(1S)h_{c1}(1P)$
	1^5P_2	$2^{}$	342.2	320.2	-366.7	337.5	7.2	-28.4	30.2	-2.5	657	6607.6 $J/\psi(1S)\chi_{c1}(1P)$
	$1^5 P_3$	$3^{}$	342.3	320.3	-366.7	337.5	7.2	56.9	-8.6	-2.5	6623	$3 6653.1 J/\psi(1S)\chi_{c2}(1P)$
-	$2^{1}P_{1}$	$1^{}$	414.7	688.7	-263.4	548.6	-11.2	0	0	-1.6	6925	arXiv:2108.04017 [hep-ph]
ſ	$2^{\circ}P_0$	0-+	410.0	689.6	-263.4	548.6	-5.6	-46.2	-34.5	-1.7	6851	
	$2^{3}P_{1}$	1-+	410.0	689.6	-263.4	548.6	-5.6	-23.1	17.2	-1.6	6926	j
Ľ	$2^{5}P_{2}$	2-+	410.0	689.6	-263.4	548.7	-5.6	23.1	-3.4	-1.7	6951	
-	$2^{\circ}P_1$	1	398.7	689.5	-263.4	548.6	-5.6	-69.3	-24.2	-1.7	6849	r-wave
	$2^{\circ}P_2$	2	398.7	689.5	-263.4	548.6	5.6	-23.1	24.2	-1.5	6944	$-\frac{1}{10000000000000000000000000000000000$
	$2^{\circ}P_3$	3 1	398.8	089.7	-203.4 215 F	048.0 797 0	0.0 0.2	40.2	-0.9	-1.0	0982 7991	2 - 10 - 10 - 12
	P_1	1 1	475.9	982.2	-215.5	797.7	-9.5	-41.0	-31.0	-1.1	7153	ivie v
	$3^3 P_1$	1-+	475.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220	M[BW2] = $6927 \pm 9 \pm 5$ •
	$3^3 P_2$	2^{-+}	475.1	982.6	-215.5	727.8	-4.6	20.9	-3.1	-1.0	7243	MeV
	$3^{5}P_{1}$	1	465.9	982.8	-215.5	727.7	4.6	-62.8	-21.7	-1.2	7150) - M(P) $\sqrt{21} - 7287 + 10 + 5$
	$3^5 P_2$	$2^{}$	465.7	982.6	-215.5	727.8	-4.6	-20.9	21.7	-1.1	7236	

465 8

982.6 -215.5 727.8

-1.1

727

11 0

-6 2

Spin Parity Analysis

First observation of $J/\psi J/\psi$ in pPb

- pPb data sample collected at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ during 2016
 - Integrated luminosity: 174.56 nb⁻¹
- Channels considered
 - $J/\psi(\rightarrow \mu\mu)J/\psi(\rightarrow \mu\mu)$
 - $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow ee)$
- Signal Yield
 - $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow\mu\mu)$: 8.5 ± 3.4
 - $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow ee)$: 5.7 ± 4.0
- Significance is 4.9 sigma for the 4 muon channel (Likelihood ratio of the fits + asymptotic formula under Wilks theorem)
- 5.3σ (combination with Fischer Formalism)

J/ψ(→µµ)J/ψ(→ee)

NSTAR2024

First observation of triple J/ ψ in pp

NNU

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$ $= 272^{+141}_{-104}$ (stat) ± 17 (syst) fb

Nature Physics 19 (2023) 338

11.0

10.5 -

8.0-

7.0

6.0

5.0

4.0

3.0

2.0

Mass [GeV/c²]

patrick.koppenburg@cern.ch 2022-12-07

2017 2018 2019 Date of arXiv submission

NSTAR2024

Jun 20, 2024

CERN

Summary

- CMS played important roles in some exotic hadron studies
- All-heavy quark exotic structures offer a system easier to understand
 - A new window to understand strong interaction
- CMS found 3 significant structures in di-J/ψ mass spectrum
 - X(6900) consistent with LHCb
 - First observation of X(6600) and evidence of a third resonance in $di-J/\psi$
 - Dips in data show possible interference effects
 - A family of structures which are candidates for all-charm tetra-quarks!

X(6600) event display

- Spin parity analysis, cross-section measurement ongoing
- Tri-J/ ψ in pp and di-J/ ψ in pPb observed for the first time

Hu

NSTAR2024

NNU

- New trigger at CMS for Run 3, new possibilities!
 - $J/\psi + \psi(2S)$
 - $\psi(2S) + \psi(2S)$
 - $J/\psi + Upsilon$
 - $\psi(2S) + Upsilon$

Backup

NSTAR2024

- Study interplay of soft QCD with (semi)hard QCD and EW physics
- Sensitivity to perturbative heavy flavor generation and nonperturbative initial and final state effects
 - Initial state: e.g. sensitivity to the concepts of single (SPS), double (DPS) and triple (TPS) parton scattering

• Final state: e.g. sensitivity to heavy flavour hadron formation (colour singlet vs. colour octet), sensitivity to resonant multi-heavy-flavor states

We saw hints at Run I data (7 TeV & 8 TeV) Proposed three signal regions for Run II data

Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Blinded mass windows for Run II:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result (13 TeV, 2020)

NSTAR2024

Event selections

Muon selection

- $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
- $|\eta(\mu^{\pm})| < 2.4$
- All muons are soft
- For 2017-18 years: $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$ for at least one $\mu^+\mu^-$ pair, which has $vtxprob(\mu^+\mu^-) > 0.5\%$ and 2.95 < $m_{\mu^+\mu^-} < 3.25 \text{ GeV}$

 J/ψ selection

- •2.95 < $m_{J/\psi}$ < 3.25 GeV
- • $p_T(J/\psi) > 3.5 \text{ GeV/c}$
- • $vtxprob(J/\psi) > 0.5\%$
- •Constrained $vtxprob(J/\psi) > 0.1\%$

 $\frac{J/\psi J/\psi \text{ selection}}{vtxprob(4\mu) > 0.5\%}$ $\frac{vtxprob(J/\psi J/\psi) > 0.1\%}{vtxproper HLT \text{ is fired in event}}$

Multiple candidates

•Choose the best candidate with minimum $\left(\frac{M(J/\psi_1)-M(J/\psi_{PDG})}{\sigma(M(J/\psi_1))}\right)^2 + \left(\frac{M(J/\psi_2)-M(J/\psi_{PDG})}{\sigma(M(J/\psi_2))}\right)^2$ value if there are 4 muons in event, but more than one candidate (~0.2%) •Keep all candidates if there are more then 4 muons in event (~0.2%)

Baseline mass variable – invariant mass of two constrained J/ ψ candidates

NSTAR2024

Significance with systematics

- To include systematics, alternative resonance/background shapes applied in the fit.
- Calculate signal- and null-hypothesis *NLL_syst* including systematic using:

 $NLL_(syst-sig) = Min\{NLL_(nom-sig), NLL_(alt-i-sig)+0.5+0.5\cdot\Delta dof\}$

- □ *NLL_(nom-sig)*: the NLL of nominal 'signal hypothesis' fit.
- \square *NLL_(alt-i-sig)*: the NLL of i-th alternative fit of 'signal hypothesis'
- $NLL_(syst-null) = Min\{NLL_(nom-null), NLL_(alt-j-null)+0.5+0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from *NLL_(syst-null)-NLL_(syst-sig)*

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

Line shape

• S-wave relativistic Breit-Wigner (used in default fit):

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}$$
, where $\Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m}$,

q is the momentum of a daughter in the mother particle rest frame; q_0 means the value at peak position ($m = m_0$).

• NRSPS and NRDPS:

 $f_{NRSPS}(x, x_0, \alpha, p_1, p_2, p_3)$

$$= (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp\left(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}}\right),$$

$$f_{NRDPS}(x, a, p_0, p_1, p_2) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2),$$

where $x_0 = 2m_{J/\psi}, x_t = x - x_0$

Zhen Hu

NSTAR2024

43

Interf. term

Exploration of possible interference among BWs

- Explored fit with interference among various combinations of BWs
- Pdf for three BW interference

 $Pdf(m) = N_{X_0} \cdot |BW_0|^2 \otimes R(M_0)$

+ N_{NRSPS} ; $f_{SPS}(m)$ + N_{NRDPS} ; $f_{DPS}(m)$. Studied many ways interference due to possible J^{PC} and quantum coherence

+ $N_{X and interf} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2$

- 2-object-interference among BW0, BW1, BW2, BW3
- 3-object-interference among BW0, BW1, BW2, BW3
- 4-object-interference among BW0, BW1, BW2, BW3

NSTAR2024

Final CMS choice: interference among BW1, BW2, BW3

٠

Significance with systematics

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6
total	12	5	5	34	19	20

- Investigated effects of systematics on local significance by a profiling procedure
- A discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

 $M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV} \quad \Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV} >5.7\sigma$ $M[BW2] = 6927 \pm 9 \pm 5 \text{ MeV} \quad \Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV} >9.4\sigma$ $M[BW3] = 7287 \pm 19 \pm 5 \text{ MeV} \quad \Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV} >4.1\sigma$

Systematic uncertainties for interf. case

 Fit	Dominant sources	$\Lambda M_{\rm DM4}$	$\Lambda M_{\rm DM2}$	$\Lambda M_{\rm DM2}$	$\Lambda\Gamma_{\rm DM}$	$\Lambda \Gamma_{\rm DM/2}$	ΔΓριμα
	Dominant Sources	DIMB W1	ZIVIBW2	ZIVIBW3	TH BW1	BW2	BI BW3
Interference	Signal shape	7	12	7	56	8	7
	NRDPS	1	3	2	18	6	2
	NRSPS	9	14	13	85	9	20
	Resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	< 1	5	3	2
	Feeddown shape	-27	+44	+38	-208	+19	+12
	Full uncertainty	$+16 \\ -31$	$+48 \\ -20$	$+41 \\ -15$	$+109 \\ -235$	$+25 \\ -17$	$+29 \\ -26$

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feeddown contribution are asymmetric
- Systematic uncertainties from other sources are symmetric

LHCb collaboration/Science Bulletin 65 (2020) 1983–1993

Fig. 4. Invariant mass spectra of weighted di- J/ψ candidates in bins of $p_T^{di-J/\psi}$ and overlaid projections of the $p_T^{di-J/\psi}$ -binned fit with model I.

Jun 20, 2024

NSTAR2024

46

