

Light quark baryons

U. Thoma, Bonn

Contents:

- Introduction
- Experimental data
- Results on the spectrum
- Open questions
- Summary

Why baryons?

A They played am important role in the development of our universe

 $\Leftrightarrow \text{ baryons} = \text{dominant part of visible}$ matter in the universe $\Delta^{++} \rightarrow \text{color} \leftrightarrow \text{ non-abelian character of QCD}$

⇔ Can we claim that we have understood Quantum Chromodynamics without understanding its bound states? ⇔ NO!

⇔ One of the worst understood areas of the standard model = a challenge!

 \Leftrightarrow How does QCD produce its massive bound states from almost

massless quarks?

Aim: Good understanding of the spectrum and the properties of baryon resonances \leftrightarrow bound states of strong QCD

- What are the relevant degrees of freedom ?
- Effective forces between them ?

Symmetric quark models:

 \rightarrow more resonances expected than observed yet

non-strange N*-resonances (PDG)

U. Loering, B. Metsch, H. Petry et al. (2001) relativistic quark model

Constituent quarks, confinement potential + residual interaction

 $|\vec{\mathbf{J}}| = |\vec{\mathbf{L}} + \vec{\mathbf{S}}_{aaa}|$

↔ specific configurations seem to be missing (symmetries)

Or does the quark model just use the wrong degrees of freedom?

↔ Mesons-Baryon degrees of freedom?

... seems to work nicely for certain resonances ...

e.g. Coupled-channel unitarized chiral perturbation theory: N(1535)1/2⁻, N(1650)1/2⁻ dynamically generated but not Δ (1620)1/2⁻ (Bruns, Mai, Meißner, PLB 697 (2011) 254, Mai, Bruns, Meißner, PRD 86 (2012) 094033)

↔ Functional methods (Dyson-Schwinger/Bethe-Salpeter equations) Nice results! ... spectrum so far only J=1/2, 3/2 (up to ~ 1950 MeV)

Eichmann, Few Body Syst. 63 (2022) no 3

Aim: Good understanding of the spectrum and the properties of baryon resonances = the bound states of strong QCD

- Effective degrees of freedom ? / Effective forces between them ?

MeV 2.0 R.Edwards et al., Phys. Rev. D84 3010 1.8 (2011) 07450816 2676 2341 m/m_{Ω} 1.4 1.2 2006 1.0 1672 $-\Delta(1232)$ 1338 0.8 m_Π=396 MeV N(938) 1003 0.6 7+

Exhibits the broad features expected from SU(6) \otimes O(3)-symmetry

- → Counting of levels consistent with non-rel. quark model ⇔ "missing resonances"
- \rightarrow no parity doubling

Of course there are also approximations made by lattice QCD (e.g. m_{π} =396 MeV)

\Rightarrow Good understanding of the spectrum and properties of baryon resonances

Experimentally: Broad and strongly overlapping resonances

Important:

- \rightarrow Investigation of different final states
- → Investigation of different production processes: πN , γN , $\gamma^* N$, Ψ , Ψ' -decays, ...
- → Measurement of polarization observables (unambiguous PWA)

Recently: a lot of progress from photoproduction experiments:

CBELSA/TAPS (ELSA),

CBALL (MAMI),

LEPS (Spring-8), BGOOD (ELSA), GlueX (JLab), ...

[⇔] polarized beam, polarized target

\Rightarrow Good understanding of the spectrum and properties of baryon resonances

Experimentally: Broad and strongly overlapping resonances

Important:

- \rightarrow Investigation of different final states
- → Investigation of different production processes: πN , γN , $\gamma^* N$, Ψ , Ψ' -decays, ...
- → Measurement of polarization observables (unambiguous PWA)

Recently: a lot of progress from photoproduction experiments:

CBELSA/TAPS (ELSA),

CBALL (MAMI),

LEPS (Spring-8), BGOOD (ELSA), GlueX (JLab), ...

[⇔] polarized beam, polarized target

Double Polarization Experiments - Selected Results -

Circularly polarized photons, longitudinally polarized target

CBELSA/TAPS

proton spin

 $\sigma_{1/2}$

<hr/>-1/2</hr>

 $\gamma p
ightarrow p \pi^0$:

PWAs: SAID (SN11, CM12), MAID BnGa (2011_2)

 $\leftrightarrow \text{ describe the} \\ \text{so far existing} \\ \text{photoproduction} \\ \text{data, but } \dots \\$

large deviations observed

Differences even at low – energies where everything was thought to be well understood ...

M. Gottschall et al. (CBELSA/TAPS-collaboration) Phys. Rev. Lett. 112, 012003 (2014)

$ec{\gamma}ec{p} ightarrow p\pi^0$: Recent results on E = $rac{\sigma_{1/2}-\sigma_{3/2}}{\sigma_{1/2}+\sigma_{3/2}}$

⇔ Coupled channel PWA important!

M. Gottschall et al. (CBELSA/TAPS-collaboration) Phys. Rev. Lett. 112, 012003 (2014), Eur. Phys. J. A 57, 40 (2021) C. W. Kim, N. Zachariou et al. (CLAS-collaboration), Eur. Phys. J. A 59 217 (2023) F. Afzal et al. [A2-collaboration], Phys. Rev. Lett. 132 12190 (2024)

circ. pol. photons, long. pol. target, CBELSA/TAPS high energy bins, blue: CLAS

- \Rightarrow data approaches the high mass region
- new BnGa-fit : Determination of precise $p\eta$ -branching ratios for resonances

J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

Data allowed a new determination of $p\eta$ -branching ratios for many resonances,

e.g.:

J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1895)1/2^-$
BnGa	0.41±0.04	0.33±0.04	0.10±0.05
PDG'2012	0.42±0.10	0.05 - 0.15	no PDG estimate

⇔ Additional constraints from new (polarization) data fix PWA-solutions much better than before

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

New data also included in JüBo:

= Power of polarisation data!

Data allowed a new determination of $p\eta$ -branching ratios for many resonances,

e.g.:

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1895)1/2^-$
BnGa	0.41±0.04	0.33±0.04	0.10±0.05
PDG'2012	0.42±0.10	0.05 - 0.15	no PDG estimate

Additional constraints from new (polarization) data fix PWA-solutions much better than before

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

New data also included in JüBo:

D. Rönchen et al, EPJA 58:229 (2022)

 ηN residue of N(1650)1/2 $^-$ increased by almost a factor of 2!

= Power of polarisation data!

J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

New Σ -data at high E - LEPS2

 $\Leftrightarrow \text{constraints for the high mass regime}$

T. Hashimoto et al. [LEPS2/BGOegg], PRC 106 035201 (2022)

Multi-channel Bonn-Gatchina PWA:

- ⇒ Confirmation known resonances, better determination of their properties
- ⇒ New resonances observed

	RPP 2010	our analyses	RPP'22 (2018-22)
N(1710)1/2+	***	****	****
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		***	***
N(1895)1/2-		****	****
N(1900)3/2+	**	****	****
N(2060)5/2-		***	***
N(2100)1/2+	*	***	***
N(2120)3/2-		***	***
∆ (1600)3/2 +	***	***	****
∆ (1900)1/2 [−]	*	***	***
∆ (1940)3/2 [−]	*	**	**
∆ (2200)7/2 [−]	*	***	***

only examples shown

from 2000-2010 <u>not one</u> new baryon resonance was considered by the PDG

 ↔ Results from photoproduction do enter the PDG and determine the properties of baryon resonances!

before: almost entirely πN -elastic scattering and some π -photoproduction At higher \sqrt{s} : \Leftrightarrow elastic cross section decreases \Leftrightarrow more an more inelastic channels open

Photoproduction provides access

- to the "inelastic channels"
- \Rightarrow resonance properties

BnGa-PWA: A. V. Anisovich et al., EPJA 48 (2012) 15, PRL 119 (2017) 062004, PLB 772 (2017) 247, J. Müller et al., PLB 803 (2020) 135323 ...

Multi-channel Bonn-Gatchina PWA:

- ⇒ Confirmation known resonances, better determination of their properties
- \Rightarrow New resonances observed

	RPP 2010	our analyses	RPP'22 (2018-22)
N(1710)1/2+	***	****	****
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		***	***
N(1895)1/2-		****	****
N(1900)3/2+	**	****	*** <mark>*</mark>
N(2060)5/2-		***	***
N(2100)1/2+	*	***	***
N(2120)3/2-		***	***
∆ (1600)3/2 +	***	***	*** <mark>*</mark>
∆(1900)1/2 ⁻	*	***	***
∆ (1940)3/2 [−]	*	**	**
Δ (2200)7/2 $^-$	*	***	***

BnGa-PWA: A. V. Anisovich et al., EPJA 48 (2012) 15, PRL 119 (2017) 062004, PLB 772 (2017) 247, J. Müller et al., PLB 803 (2020) 135323 ...

N*-, Δ^* - pole positions:

⇔ Parity doublets occur!

- not expected by present lattice QCD calculations or constituent quark-models
- ⇔ Strong QCD not yet understood !

 Δ (1910)1/2⁺ Δ (1920)3/2⁺ Δ (1905)5/2⁺ Δ (1950)7/2⁺ Δ (1900)1/2⁻ Δ (1940)3/2⁻ Δ (1930)5/2⁻ ??? 7/2⁻

Search for the parity partner of the well known Δ (1950)7/2⁺ (4*) =

 $\Rightarrow J^{\mathbf{P}} = 7/2^{-} \text{-state found at a significantly}$ higher mass: m = 2200 MeV (7/2⁻(2200) - (1*)-resonance (PDG) confirmed)

- ⇔ No parity-partner found
- $\Rightarrow \text{Certain states have parity partners, others not} \\\Rightarrow \text{Not yet understood!}$

V. Anisovich et al. (BnGa-PWA), Phys.Lett. B766 (2017) 357

PWA-results of different groups

BnGa'2024 - preliminary

Kent: B. Hunt, M. Manley PRC 99, 055205 (2019)

JüBo: D. Rönchen et al., EPJA 58:229 (2022)

SAID: W. Briscoe et al., PRC 108, 065205 (2023) / A. Svarc et al., PRC 91, 015207 (2015)

RPP'2024

of course:

results not model independent

analyses not all based on the same data

Pole positions:

- Good consistency for many resonances (results converge)
- \Leftrightarrow Some areas are more difficult than others: e.g. $N^* 3/2^-$
- ⇔ Still not all quark model resonances observed

 \Leftrightarrow Do all the expected qqq-SU(6)xO(3)-states exist? / the still missing states?

- Existing but experimentally not found yet?
 - ⇔ photoproduction of the neutron + other production processes
 - ⇔ multi-meson photoproduction, further final states

⇔ Certain resonances have parity partners others don't ⇔ Why?

- Needs to be explained by theory
 - ⇔ effective degrees of freedom / effective forces
 - ⇔ meson-baryon or 3q or

... also relates to the first point ...

 ⇒ Clarify the systematics in the system!
 (SU(6): u↑↓ d↑↓ s↑↓)
 ⇔ also strange baryons of large interest

... two low mass $\Lambda\text{-states}$ would break the systematics of the quarkmodel ...

Summary

- Based on the new data, our knowledge of the spectrum and the properties of baryons is steadily increasing !
- ↔ Important contributions from photoproduction experiments (single and double polarisation experiments (many final states))
- ⇒ Observation of new resonances
- ⇒ Confirmation of known states, determination of their properties

But: Complex bound states of QCD are not yet understood!

- \Leftrightarrow Systematics in the spectrum \leftrightarrow theoretical explanation?
- ⇔ Inner structure of the states? ggg / meson-baryon / both / ?

Experiment:

more interesting results: \rightarrow to be shown during this conference

\rightarrow to come!

- e.g.: KY-photoproduction data polarisation observables
 - photoproduction off the neutron polarisation observables
 - additional final states, production processes
 - Q^2 -dependence \leftrightarrow transition FF / other probes
 - strange baryons

Theory \rightarrow results from the lattice, 2 pole structures, functional methods,

-

Precise measurements of polarisation observables

CBELSA/TAPS, CLAS-data (only a few of the measured bins shown:)

PLB 750, 53 (2015)

The Spectrum of Baryon Resonances - SU(6)xO(3)-Multiplets

Multi-Meson-Photoproduction: $\gamma p \rightarrow p \pi^0 \pi^0$, $\gamma p \rightarrow p \pi^0 \eta$

- $\Delta(1910)1/2^+$, $\Delta(1920)3/2^+$, $\Delta(1905)5/2^+$, $\Delta(1950)7/2^+$ in average: negligible decay fraction (5 ± 2%) into: N(1520)3/2^{- π}, N(1535)1/2^{- π}, ($L \neq 0$ -resonances)
- N(1880)1/2⁺, N(1900)3/2⁺, N(2000)5/2⁺, N(1990)7/2⁺ in average: 21% decays into:

 $N(1520)3/2^{-}\pi, N(1535)1/2^{-}\pi, N\sigma \ (L \neq 0\text{-resonances})$

V. Sokhoyan et al. (CBELSA/TAPS-collaboration), EPJA 51 (2015) 95 A. Thiel et al. (CBELSA/TAPS-collaboration), PRL 114 (2015) 091803, T.Seifen et al., arXiv:2207.01981 [nucl-ex] ... Why ?

An interpretation using quarkmodel-wave-functions:

Δ*'s @1900 MeV:

symmetric wave function (56'plet)

N*'s @1900 MeV:

wave function: M_S / M_A (70'plet)

⇒ would explain the observation!

... and it seems to hold more general ...

⇔ supports a two-oscillator picture of resonances (3q)

... confirmation in further (polarisation) measurements

Hyperons

SU(6)xO(3):

$(D, L_N^P) S J^P$	Singlet	Octet		Decuplet		
$(56, 0^+_0) \frac{1}{2} \frac{1}{2}^+$		N(939)	$\Lambda(1116)$	$\Sigma(1193)$		
$\frac{3}{2}$ $\frac{3}{2}^+$					$\Delta(1232)$	$\Sigma(1385)$
$(70, 1_1^-) \frac{1}{2} \frac{1}{2}^-$	$\Lambda(1405)$	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Delta(1620)$	$\Sigma(1900)^a$
3-	A(1520)	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Delta(1700)$	$\Sigma(1910)^a$
$\frac{3}{2} \frac{1}{2}^{-}$		N(1650)	$\Lambda(1800)$	$\Sigma(1750)$		
3- 2		N(1700)				
5-		N(1675)	$\Lambda(1830)$	$\Sigma(1775)$		
$(56, 0^+_2) \frac{1}{2} \frac{1}{2}^+$		N(1440)	$\Lambda(1600)$	$\Sigma(1660)$		
$\frac{3}{2}\frac{3}{2}^+$					$\Delta(1600)$	$\Sigma(1780)$
$(70, 0^+_2) \frac{1}{2} \frac{1}{2}^+$	A(1710)	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Delta(1750)$	-
$\frac{3}{2} \frac{3}{2}^+$						
$(56, 2^+_2) \frac{1}{2} \frac{3}{2}^+$		N(1720)	$\Lambda(1890)$	$\Sigma(1940)$		
$\frac{1}{2}\frac{5}{2}^+$		N(1680)	$\Lambda(1820)$	$\Sigma(1915)$		
$\frac{3}{2} \frac{1}{2}^+$					$\Delta(1910)$	-
$\frac{3}{2}\frac{3}{2}^+$					$\Delta(1920)$	$\Sigma(2080)$
$\frac{3}{2}\frac{5}{2}^+$					$\Delta(1905)$	$\Sigma(2070)$
$\frac{3}{2}\frac{7}{2}^+$					$\Delta(1950)$	$\Sigma(2030)$
$(70, 2^+_2) \frac{1}{2} \frac{3}{2}^+$	A(2070)	-	-	-	-	-
5+ 2	$\overline{\Lambda(2110)}$	N(1860)	-	-	$\Delta(2000)$	-
$\frac{3}{2}\frac{1}{2}^+$		N(1880)	-	-		
3+ 2		N(1900)	-	-		
5+2		N(2000)	-	-		
7+		N(1990)	$\Lambda(2085)$			
$(20, 1^+_2) \frac{1}{2} \frac{1}{2}^+$	· ·	-		-		
3+ 2	-	-				
5+ 2	-					
$(56, 1_3^-) \frac{1}{2} \frac{1}{2}^-$		N(1895)	A(2000)	$\Sigma(1900)^a$		
3-		N(1875)	A(2050)	$\Sigma(1910)^a$		
$\frac{3}{2}\frac{1}{2}^{-}$					$\Delta(1900)$	$\Sigma(2110)^a$
3-2					$\Delta(1940)$	$\Sigma(2010)^a$
5-					$\Delta(1930)$	-
$(70, 3^3) \frac{1}{2} \frac{5}{2}^-$	A(2080)	$N(2060)^{b}$	-	-	-	-
7-2-	A(2100)	$N(2190)^{b}$	-	$\Sigma(2100)$	$\Delta(2200)$	-
$(70, 3^3) \frac{3}{2} \frac{3}{2}^-$		N(2120)	-	-	-	-
5-		$N(2060)^{b}$	-	-	-	
7-		$N(2190)^{b}$	-	-	-	
9-		N(2290)	-	-	-	

----- No state / state assigned twice

---- No 3*/4*-resonances

Effective degrees of freedom? Meson – Baryon or qqq-states ⇔ SU(6)xO(3)

- \bullet e.g. more than 50% of the expected $\Sigma^*\mbox{-states not/badly known}$
- $\Lambda(1405)$: 2 pole structure chiral unitary approach \leftrightarrow meson-baryon interaction

M. Mai EPJST (2021) 230:1593

